Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p6 Structured version   Visualization version   GIF version

Theorem aks4d1p6 42069
Description: The maximal prime power exponent is smaller than the binary logarithm floor of 𝐵. (Contributed by metakunt, 30-Oct-2024.)
Hypotheses
Ref Expression
aks4d1p6.1 (𝜑𝑁 ∈ (ℤ‘3))
aks4d1p6.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p6.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p6.4 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
aks4d1p6.5 (𝜑𝑃 ∈ ℙ)
aks4d1p6.6 (𝜑𝑃𝑅)
aks4d1p6.7 𝐾 = (𝑃 pCnt 𝑅)
Assertion
Ref Expression
aks4d1p6 (𝜑𝐾 ≤ (⌊‘(2 logb 𝐵)))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝑘,𝑁   𝜑,𝑘   𝑅,𝑟
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑘)   𝐵(𝑘)   𝑃(𝑘,𝑟)   𝑅(𝑘)   𝐾(𝑘,𝑟)   𝑁(𝑟)

Proof of Theorem aks4d1p6
StepHypRef Expression
1 aks4d1p6.7 . . . . . . 7 𝐾 = (𝑃 pCnt 𝑅)
21a1i 11 . . . . . 6 (𝜑𝐾 = (𝑃 pCnt 𝑅))
3 aks4d1p6.5 . . . . . . 7 (𝜑𝑃 ∈ ℙ)
4 aks4d1p6.1 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘3))
5 aks4d1p6.2 . . . . . . . . . 10 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
6 aks4d1p6.3 . . . . . . . . . 10 𝐵 = (⌈‘((2 logb 𝑁)↑5))
7 aks4d1p6.4 . . . . . . . . . 10 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
84, 5, 6, 7aks4d1p4 42067 . . . . . . . . 9 (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅𝐴))
98simpld 494 . . . . . . . 8 (𝜑𝑅 ∈ (1...𝐵))
10 elfznn 13514 . . . . . . . 8 (𝑅 ∈ (1...𝐵) → 𝑅 ∈ ℕ)
119, 10syl 17 . . . . . . 7 (𝜑𝑅 ∈ ℕ)
123, 11pccld 16821 . . . . . 6 (𝜑 → (𝑃 pCnt 𝑅) ∈ ℕ0)
132, 12eqeltrd 2828 . . . . 5 (𝜑𝐾 ∈ ℕ0)
1413nn0zd 12555 . . . 4 (𝜑𝐾 ∈ ℤ)
1514zred 12638 . . 3 (𝜑𝐾 ∈ ℝ)
16 prmnn 16644 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
173, 16syl 17 . . . . 5 (𝜑𝑃 ∈ ℕ)
1817nnred 12201 . . . 4 (𝜑𝑃 ∈ ℝ)
1917nngt0d 12235 . . . 4 (𝜑 → 0 < 𝑃)
206a1i 11 . . . . . . . 8 (𝜑𝐵 = (⌈‘((2 logb 𝑁)↑5)))
21 2re 12260 . . . . . . . . . . . 12 2 ∈ ℝ
2221a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
23 2pos 12289 . . . . . . . . . . . 12 0 < 2
2423a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 2)
25 eluzelz 12803 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
264, 25syl 17 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
2726zred 12638 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
28 0red 11177 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
29 3re 12266 . . . . . . . . . . . . 13 3 ∈ ℝ
3029a1i 11 . . . . . . . . . . . 12 (𝜑 → 3 ∈ ℝ)
31 3pos 12291 . . . . . . . . . . . . 13 0 < 3
3231a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 3)
33 eluzle 12806 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
344, 33syl 17 . . . . . . . . . . . 12 (𝜑 → 3 ≤ 𝑁)
3528, 30, 27, 32, 34ltletrd 11334 . . . . . . . . . . 11 (𝜑 → 0 < 𝑁)
36 1red 11175 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ)
37 1lt2 12352 . . . . . . . . . . . . . 14 1 < 2
3837a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 < 2)
3936, 38ltned 11310 . . . . . . . . . . . 12 (𝜑 → 1 ≠ 2)
4039necomd 2980 . . . . . . . . . . 11 (𝜑 → 2 ≠ 1)
4122, 24, 27, 35, 40relogbcld 41961 . . . . . . . . . 10 (𝜑 → (2 logb 𝑁) ∈ ℝ)
42 5nn0 12462 . . . . . . . . . . 11 5 ∈ ℕ0
4342a1i 11 . . . . . . . . . 10 (𝜑 → 5 ∈ ℕ0)
4441, 43reexpcld 14128 . . . . . . . . 9 (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ)
45 ceilcl 13804 . . . . . . . . 9 (((2 logb 𝑁)↑5) ∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
4644, 45syl 17 . . . . . . . 8 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
4720, 46eqeltrd 2828 . . . . . . 7 (𝜑𝐵 ∈ ℤ)
4847zred 12638 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
49 9re 12285 . . . . . . . . . 10 9 ∈ ℝ
5049a1i 11 . . . . . . . . 9 (𝜑 → 9 ∈ ℝ)
51 9pos 12299 . . . . . . . . . 10 0 < 9
5251a1i 11 . . . . . . . . 9 (𝜑 → 0 < 9)
5327, 343lexlogpow5ineq4 42044 . . . . . . . . 9 (𝜑 → 9 < ((2 logb 𝑁)↑5))
5428, 50, 44, 52, 53lttrd 11335 . . . . . . . 8 (𝜑 → 0 < ((2 logb 𝑁)↑5))
55 ceilge 13807 . . . . . . . . . 10 (((2 logb 𝑁)↑5) ∈ ℝ → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
5644, 55syl 17 . . . . . . . . 9 (𝜑 → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
5756, 20breqtrrd 5135 . . . . . . . 8 (𝜑 → ((2 logb 𝑁)↑5) ≤ 𝐵)
5828, 44, 48, 54, 57ltletrd 11334 . . . . . . 7 (𝜑 → 0 < 𝐵)
5947, 58jca 511 . . . . . 6 (𝜑 → (𝐵 ∈ ℤ ∧ 0 < 𝐵))
60 elnnz 12539 . . . . . 6 (𝐵 ∈ ℕ ↔ (𝐵 ∈ ℤ ∧ 0 < 𝐵))
6159, 60sylibr 234 . . . . 5 (𝜑𝐵 ∈ ℕ)
6261nnred 12201 . . . 4 (𝜑𝐵 ∈ ℝ)
6361nngt0d 12235 . . . 4 (𝜑 → 0 < 𝐵)
64 2z 12565 . . . . . . . . 9 2 ∈ ℤ
6564a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℤ)
6665zred 12638 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
67 prmuz2 16666 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
683, 67syl 17 . . . . . . . 8 (𝜑𝑃 ∈ (ℤ‘2))
69 eluzle 12806 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
7068, 69syl 17 . . . . . . 7 (𝜑 → 2 ≤ 𝑃)
7136, 66, 18, 38, 70ltletrd 11334 . . . . . 6 (𝜑 → 1 < 𝑃)
7236, 71ltned 11310 . . . . 5 (𝜑 → 1 ≠ 𝑃)
7372necomd 2980 . . . 4 (𝜑𝑃 ≠ 1)
7418, 19, 62, 63, 73relogbcld 41961 . . 3 (𝜑 → (𝑃 logb 𝐵) ∈ ℝ)
7566, 24, 62, 63, 40relogbcld 41961 . . 3 (𝜑 → (2 logb 𝐵) ∈ ℝ)
7617nnrpd 12993 . . . . . . 7 (𝜑𝑃 ∈ ℝ+)
7776rpcnd 12997 . . . . . 6 (𝜑𝑃 ∈ ℂ)
7876rpne0d 13000 . . . . . 6 (𝜑𝑃 ≠ 0)
7977, 78, 14cxpexpzd 26620 . . . . 5 (𝜑 → (𝑃𝑐𝐾) = (𝑃𝐾))
8018, 13reexpcld 14128 . . . . . . 7 (𝜑 → (𝑃𝐾) ∈ ℝ)
8111nnred 12201 . . . . . . 7 (𝜑𝑅 ∈ ℝ)
822oveq2d 7403 . . . . . . . 8 (𝜑 → (𝑃𝐾) = (𝑃↑(𝑃 pCnt 𝑅)))
83 pcdvds 16835 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑅)) ∥ 𝑅)
843, 11, 83syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∥ 𝑅)
8517nnzd 12556 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℤ)
86 zexpcl 14041 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ (𝑃 pCnt 𝑅) ∈ ℕ0) → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℤ)
8785, 12, 86syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℤ)
88 dvdsle 16280 . . . . . . . . . 10 (((𝑃↑(𝑃 pCnt 𝑅)) ∈ ℤ ∧ 𝑅 ∈ ℕ) → ((𝑃↑(𝑃 pCnt 𝑅)) ∥ 𝑅 → (𝑃↑(𝑃 pCnt 𝑅)) ≤ 𝑅))
8987, 11, 88syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) ∥ 𝑅 → (𝑃↑(𝑃 pCnt 𝑅)) ≤ 𝑅))
9084, 89mpd 15 . . . . . . . 8 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ≤ 𝑅)
9182, 90eqbrtrd 5129 . . . . . . 7 (𝜑 → (𝑃𝐾) ≤ 𝑅)
92 elfzle2 13489 . . . . . . . 8 (𝑅 ∈ (1...𝐵) → 𝑅𝐵)
939, 92syl 17 . . . . . . 7 (𝜑𝑅𝐵)
9480, 81, 62, 91, 93letrd 11331 . . . . . 6 (𝜑 → (𝑃𝐾) ≤ 𝐵)
9578, 73nelprd 4621 . . . . . . . 8 (𝜑 → ¬ 𝑃 ∈ {0, 1})
9677, 95eldifd 3925 . . . . . . 7 (𝜑𝑃 ∈ (ℂ ∖ {0, 1}))
9762recnd 11202 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
9828, 63ltned 11310 . . . . . . . . . . 11 (𝜑 → 0 ≠ 𝐵)
9998necomd 2980 . . . . . . . . . 10 (𝜑𝐵 ≠ 0)
10099neneqd 2930 . . . . . . . . 9 (𝜑 → ¬ 𝐵 = 0)
101 elsng 4603 . . . . . . . . . 10 (𝐵 ∈ ℕ → (𝐵 ∈ {0} ↔ 𝐵 = 0))
10261, 101syl 17 . . . . . . . . 9 (𝜑 → (𝐵 ∈ {0} ↔ 𝐵 = 0))
103100, 102mtbird 325 . . . . . . . 8 (𝜑 → ¬ 𝐵 ∈ {0})
10497, 103eldifd 3925 . . . . . . 7 (𝜑𝐵 ∈ (ℂ ∖ {0}))
105 cxplogb 26696 . . . . . . 7 ((𝑃 ∈ (ℂ ∖ {0, 1}) ∧ 𝐵 ∈ (ℂ ∖ {0})) → (𝑃𝑐(𝑃 logb 𝐵)) = 𝐵)
10696, 104, 105syl2anc 584 . . . . . 6 (𝜑 → (𝑃𝑐(𝑃 logb 𝐵)) = 𝐵)
10794, 106breqtrrd 5135 . . . . 5 (𝜑 → (𝑃𝐾) ≤ (𝑃𝑐(𝑃 logb 𝐵)))
10879, 107eqbrtrd 5129 . . . 4 (𝜑 → (𝑃𝑐𝐾) ≤ (𝑃𝑐(𝑃 logb 𝐵)))
10976rpred 12995 . . . . 5 (𝜑𝑃 ∈ ℝ)
11036, 66, 109, 38, 70ltletrd 11334 . . . . 5 (𝜑 → 1 < 𝑃)
111109, 110, 15, 74cxpled 26629 . . . 4 (𝜑 → (𝐾 ≤ (𝑃 logb 𝐵) ↔ (𝑃𝑐𝐾) ≤ (𝑃𝑐(𝑃 logb 𝐵))))
112108, 111mpbird 257 . . 3 (𝜑𝐾 ≤ (𝑃 logb 𝐵))
11322, 38rplogcld 26538 . . . . 5 (𝜑 → (log‘2) ∈ ℝ+)
114109, 110rplogcld 26538 . . . . 5 (𝜑 → (log‘𝑃) ∈ ℝ+)
11561nnrpd 12993 . . . . . 6 (𝜑𝐵 ∈ ℝ+)
116115relogcld 26532 . . . . 5 (𝜑 → (log‘𝐵) ∈ ℝ)
11761nnge1d 12234 . . . . . 6 (𝜑 → 1 ≤ 𝐵)
11862, 117logge0d 26539 . . . . 5 (𝜑 → 0 ≤ (log‘𝐵))
119 2rp 12956 . . . . . . . 8 2 ∈ ℝ+
120119a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ+)
121120, 76logled 26536 . . . . . 6 (𝜑 → (2 ≤ 𝑃 ↔ (log‘2) ≤ (log‘𝑃)))
12270, 121mpbid 232 . . . . 5 (𝜑 → (log‘2) ≤ (log‘𝑃))
123113, 114, 116, 118, 122lediv2ad 13017 . . . 4 (𝜑 → ((log‘𝐵) / (log‘𝑃)) ≤ ((log‘𝐵) / (log‘2)))
124 relogbval 26682 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℝ+) → (𝑃 logb 𝐵) = ((log‘𝐵) / (log‘𝑃)))
12568, 115, 124syl2anc 584 . . . . 5 (𝜑 → (𝑃 logb 𝐵) = ((log‘𝐵) / (log‘𝑃)))
126125eqcomd 2735 . . . 4 (𝜑 → ((log‘𝐵) / (log‘𝑃)) = (𝑃 logb 𝐵))
12765uzidd 12809 . . . . . 6 (𝜑 → 2 ∈ (ℤ‘2))
128 relogbval 26682 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℝ+) → (2 logb 𝐵) = ((log‘𝐵) / (log‘2)))
129127, 115, 128syl2anc 584 . . . . 5 (𝜑 → (2 logb 𝐵) = ((log‘𝐵) / (log‘2)))
130129eqcomd 2735 . . . 4 (𝜑 → ((log‘𝐵) / (log‘2)) = (2 logb 𝐵))
131123, 126, 1303brtr3d 5138 . . 3 (𝜑 → (𝑃 logb 𝐵) ≤ (2 logb 𝐵))
13215, 74, 75, 112, 131letrd 11331 . 2 (𝜑𝐾 ≤ (2 logb 𝐵))
133 flge 13767 . . 3 (((2 logb 𝐵) ∈ ℝ ∧ 𝐾 ∈ ℤ) → (𝐾 ≤ (2 logb 𝐵) ↔ 𝐾 ≤ (⌊‘(2 logb 𝐵))))
13475, 14, 133syl2anc 584 . 2 (𝜑 → (𝐾 ≤ (2 logb 𝐵) ↔ 𝐾 ≤ (⌊‘(2 logb 𝐵))))
135132, 134mpbid 232 1 (𝜑𝐾 ≤ (⌊‘(2 logb 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3405  cdif 3911  {csn 4589  {cpr 4591   class class class wbr 5107  cfv 6511  (class class class)co 7387  infcinf 9392  cc 11066  cr 11067  0cc0 11068  1c1 11069   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  5c5 12244  9c9 12248  0cn0 12442  cz 12529  cuz 12793  +crp 12951  ...cfz 13468  cfl 13752  cceil 13753  cexp 14026  cprod 15869  cdvds 16222  cprime 16641   pCnt cpc 16807  logclog 26463  𝑐ccxp 26464   logb clogb 26674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-symdif 4216  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-ceil 13755  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-prod 15870  df-ef 16033  df-e 16034  df-sin 16035  df-cos 16036  df-pi 16038  df-dvds 16223  df-gcd 16465  df-lcm 16560  df-lcmf 16561  df-prm 16642  df-pc 16808  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522  df-ibl 25523  df-itg 25524  df-0p 25571  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466  df-logb 26675
This theorem is referenced by:  aks4d1p7d1  42070
  Copyright terms: Public domain W3C validator