Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p6 Structured version   Visualization version   GIF version

Theorem aks4d1p6 41684
Description: The maximal prime power exponent is smaller than the binary logarithm floor of 𝐵. (Contributed by metakunt, 30-Oct-2024.)
Hypotheses
Ref Expression
aks4d1p6.1 (𝜑𝑁 ∈ (ℤ‘3))
aks4d1p6.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p6.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p6.4 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
aks4d1p6.5 (𝜑𝑃 ∈ ℙ)
aks4d1p6.6 (𝜑𝑃𝑅)
aks4d1p6.7 𝐾 = (𝑃 pCnt 𝑅)
Assertion
Ref Expression
aks4d1p6 (𝜑𝐾 ≤ (⌊‘(2 logb 𝐵)))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝑘,𝑁   𝜑,𝑘   𝑅,𝑟
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑘)   𝐵(𝑘)   𝑃(𝑘,𝑟)   𝑅(𝑘)   𝐾(𝑘,𝑟)   𝑁(𝑟)

Proof of Theorem aks4d1p6
StepHypRef Expression
1 aks4d1p6.7 . . . . . . 7 𝐾 = (𝑃 pCnt 𝑅)
21a1i 11 . . . . . 6 (𝜑𝐾 = (𝑃 pCnt 𝑅))
3 aks4d1p6.5 . . . . . . 7 (𝜑𝑃 ∈ ℙ)
4 aks4d1p6.1 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘3))
5 aks4d1p6.2 . . . . . . . . . 10 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
6 aks4d1p6.3 . . . . . . . . . 10 𝐵 = (⌈‘((2 logb 𝑁)↑5))
7 aks4d1p6.4 . . . . . . . . . 10 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
84, 5, 6, 7aks4d1p4 41682 . . . . . . . . 9 (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅𝐴))
98simpld 493 . . . . . . . 8 (𝜑𝑅 ∈ (1...𝐵))
10 elfznn 13565 . . . . . . . 8 (𝑅 ∈ (1...𝐵) → 𝑅 ∈ ℕ)
119, 10syl 17 . . . . . . 7 (𝜑𝑅 ∈ ℕ)
123, 11pccld 16822 . . . . . 6 (𝜑 → (𝑃 pCnt 𝑅) ∈ ℕ0)
132, 12eqeltrd 2825 . . . . 5 (𝜑𝐾 ∈ ℕ0)
1413nn0zd 12617 . . . 4 (𝜑𝐾 ∈ ℤ)
1514zred 12699 . . 3 (𝜑𝐾 ∈ ℝ)
16 prmnn 16648 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
173, 16syl 17 . . . . 5 (𝜑𝑃 ∈ ℕ)
1817nnred 12260 . . . 4 (𝜑𝑃 ∈ ℝ)
1917nngt0d 12294 . . . 4 (𝜑 → 0 < 𝑃)
206a1i 11 . . . . . . . 8 (𝜑𝐵 = (⌈‘((2 logb 𝑁)↑5)))
21 2re 12319 . . . . . . . . . . . 12 2 ∈ ℝ
2221a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
23 2pos 12348 . . . . . . . . . . . 12 0 < 2
2423a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 2)
25 eluzelz 12865 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
264, 25syl 17 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
2726zred 12699 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
28 0red 11249 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
29 3re 12325 . . . . . . . . . . . . 13 3 ∈ ℝ
3029a1i 11 . . . . . . . . . . . 12 (𝜑 → 3 ∈ ℝ)
31 3pos 12350 . . . . . . . . . . . . 13 0 < 3
3231a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 3)
33 eluzle 12868 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
344, 33syl 17 . . . . . . . . . . . 12 (𝜑 → 3 ≤ 𝑁)
3528, 30, 27, 32, 34ltletrd 11406 . . . . . . . . . . 11 (𝜑 → 0 < 𝑁)
36 1red 11247 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ)
37 1lt2 12416 . . . . . . . . . . . . . 14 1 < 2
3837a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 < 2)
3936, 38ltned 11382 . . . . . . . . . . . 12 (𝜑 → 1 ≠ 2)
4039necomd 2985 . . . . . . . . . . 11 (𝜑 → 2 ≠ 1)
4122, 24, 27, 35, 40relogbcld 41575 . . . . . . . . . 10 (𝜑 → (2 logb 𝑁) ∈ ℝ)
42 5nn0 12525 . . . . . . . . . . 11 5 ∈ ℕ0
4342a1i 11 . . . . . . . . . 10 (𝜑 → 5 ∈ ℕ0)
4441, 43reexpcld 14163 . . . . . . . . 9 (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ)
45 ceilcl 13843 . . . . . . . . 9 (((2 logb 𝑁)↑5) ∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
4644, 45syl 17 . . . . . . . 8 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
4720, 46eqeltrd 2825 . . . . . . 7 (𝜑𝐵 ∈ ℤ)
4847zred 12699 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
49 9re 12344 . . . . . . . . . 10 9 ∈ ℝ
5049a1i 11 . . . . . . . . 9 (𝜑 → 9 ∈ ℝ)
51 9pos 12358 . . . . . . . . . 10 0 < 9
5251a1i 11 . . . . . . . . 9 (𝜑 → 0 < 9)
5327, 343lexlogpow5ineq4 41659 . . . . . . . . 9 (𝜑 → 9 < ((2 logb 𝑁)↑5))
5428, 50, 44, 52, 53lttrd 11407 . . . . . . . 8 (𝜑 → 0 < ((2 logb 𝑁)↑5))
55 ceilge 13846 . . . . . . . . . 10 (((2 logb 𝑁)↑5) ∈ ℝ → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
5644, 55syl 17 . . . . . . . . 9 (𝜑 → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
5756, 20breqtrrd 5177 . . . . . . . 8 (𝜑 → ((2 logb 𝑁)↑5) ≤ 𝐵)
5828, 44, 48, 54, 57ltletrd 11406 . . . . . . 7 (𝜑 → 0 < 𝐵)
5947, 58jca 510 . . . . . 6 (𝜑 → (𝐵 ∈ ℤ ∧ 0 < 𝐵))
60 elnnz 12601 . . . . . 6 (𝐵 ∈ ℕ ↔ (𝐵 ∈ ℤ ∧ 0 < 𝐵))
6159, 60sylibr 233 . . . . 5 (𝜑𝐵 ∈ ℕ)
6261nnred 12260 . . . 4 (𝜑𝐵 ∈ ℝ)
6361nngt0d 12294 . . . 4 (𝜑 → 0 < 𝐵)
64 2z 12627 . . . . . . . . 9 2 ∈ ℤ
6564a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℤ)
6665zred 12699 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
67 prmuz2 16670 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
683, 67syl 17 . . . . . . . 8 (𝜑𝑃 ∈ (ℤ‘2))
69 eluzle 12868 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
7068, 69syl 17 . . . . . . 7 (𝜑 → 2 ≤ 𝑃)
7136, 66, 18, 38, 70ltletrd 11406 . . . . . 6 (𝜑 → 1 < 𝑃)
7236, 71ltned 11382 . . . . 5 (𝜑 → 1 ≠ 𝑃)
7372necomd 2985 . . . 4 (𝜑𝑃 ≠ 1)
7418, 19, 62, 63, 73relogbcld 41575 . . 3 (𝜑 → (𝑃 logb 𝐵) ∈ ℝ)
7566, 24, 62, 63, 40relogbcld 41575 . . 3 (𝜑 → (2 logb 𝐵) ∈ ℝ)
7617nnrpd 13049 . . . . . . 7 (𝜑𝑃 ∈ ℝ+)
7776rpcnd 13053 . . . . . 6 (𝜑𝑃 ∈ ℂ)
7876rpne0d 13056 . . . . . 6 (𝜑𝑃 ≠ 0)
7977, 78, 14cxpexpzd 26690 . . . . 5 (𝜑 → (𝑃𝑐𝐾) = (𝑃𝐾))
8018, 13reexpcld 14163 . . . . . . 7 (𝜑 → (𝑃𝐾) ∈ ℝ)
8111nnred 12260 . . . . . . 7 (𝜑𝑅 ∈ ℝ)
822oveq2d 7435 . . . . . . . 8 (𝜑 → (𝑃𝐾) = (𝑃↑(𝑃 pCnt 𝑅)))
83 pcdvds 16836 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑅)) ∥ 𝑅)
843, 11, 83syl2anc 582 . . . . . . . . 9 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∥ 𝑅)
8517nnzd 12618 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℤ)
86 zexpcl 14077 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ (𝑃 pCnt 𝑅) ∈ ℕ0) → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℤ)
8785, 12, 86syl2anc 582 . . . . . . . . . 10 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℤ)
88 dvdsle 16290 . . . . . . . . . 10 (((𝑃↑(𝑃 pCnt 𝑅)) ∈ ℤ ∧ 𝑅 ∈ ℕ) → ((𝑃↑(𝑃 pCnt 𝑅)) ∥ 𝑅 → (𝑃↑(𝑃 pCnt 𝑅)) ≤ 𝑅))
8987, 11, 88syl2anc 582 . . . . . . . . 9 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) ∥ 𝑅 → (𝑃↑(𝑃 pCnt 𝑅)) ≤ 𝑅))
9084, 89mpd 15 . . . . . . . 8 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ≤ 𝑅)
9182, 90eqbrtrd 5171 . . . . . . 7 (𝜑 → (𝑃𝐾) ≤ 𝑅)
92 elfzle2 13540 . . . . . . . 8 (𝑅 ∈ (1...𝐵) → 𝑅𝐵)
939, 92syl 17 . . . . . . 7 (𝜑𝑅𝐵)
9480, 81, 62, 91, 93letrd 11403 . . . . . 6 (𝜑 → (𝑃𝐾) ≤ 𝐵)
9578, 73nelprd 4661 . . . . . . . 8 (𝜑 → ¬ 𝑃 ∈ {0, 1})
9677, 95eldifd 3955 . . . . . . 7 (𝜑𝑃 ∈ (ℂ ∖ {0, 1}))
9762recnd 11274 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
9828, 63ltned 11382 . . . . . . . . . . 11 (𝜑 → 0 ≠ 𝐵)
9998necomd 2985 . . . . . . . . . 10 (𝜑𝐵 ≠ 0)
10099neneqd 2934 . . . . . . . . 9 (𝜑 → ¬ 𝐵 = 0)
101 elsng 4644 . . . . . . . . . 10 (𝐵 ∈ ℕ → (𝐵 ∈ {0} ↔ 𝐵 = 0))
10261, 101syl 17 . . . . . . . . 9 (𝜑 → (𝐵 ∈ {0} ↔ 𝐵 = 0))
103100, 102mtbird 324 . . . . . . . 8 (𝜑 → ¬ 𝐵 ∈ {0})
10497, 103eldifd 3955 . . . . . . 7 (𝜑𝐵 ∈ (ℂ ∖ {0}))
105 cxplogb 26763 . . . . . . 7 ((𝑃 ∈ (ℂ ∖ {0, 1}) ∧ 𝐵 ∈ (ℂ ∖ {0})) → (𝑃𝑐(𝑃 logb 𝐵)) = 𝐵)
10696, 104, 105syl2anc 582 . . . . . 6 (𝜑 → (𝑃𝑐(𝑃 logb 𝐵)) = 𝐵)
10794, 106breqtrrd 5177 . . . . 5 (𝜑 → (𝑃𝐾) ≤ (𝑃𝑐(𝑃 logb 𝐵)))
10879, 107eqbrtrd 5171 . . . 4 (𝜑 → (𝑃𝑐𝐾) ≤ (𝑃𝑐(𝑃 logb 𝐵)))
10976rpred 13051 . . . . 5 (𝜑𝑃 ∈ ℝ)
11036, 66, 109, 38, 70ltletrd 11406 . . . . 5 (𝜑 → 1 < 𝑃)
111109, 110, 15, 74cxpled 26699 . . . 4 (𝜑 → (𝐾 ≤ (𝑃 logb 𝐵) ↔ (𝑃𝑐𝐾) ≤ (𝑃𝑐(𝑃 logb 𝐵))))
112108, 111mpbird 256 . . 3 (𝜑𝐾 ≤ (𝑃 logb 𝐵))
11322, 38rplogcld 26608 . . . . 5 (𝜑 → (log‘2) ∈ ℝ+)
114109, 110rplogcld 26608 . . . . 5 (𝜑 → (log‘𝑃) ∈ ℝ+)
11561nnrpd 13049 . . . . . 6 (𝜑𝐵 ∈ ℝ+)
116115relogcld 26602 . . . . 5 (𝜑 → (log‘𝐵) ∈ ℝ)
11761nnge1d 12293 . . . . . 6 (𝜑 → 1 ≤ 𝐵)
11862, 117logge0d 26609 . . . . 5 (𝜑 → 0 ≤ (log‘𝐵))
119 2rp 13014 . . . . . . . 8 2 ∈ ℝ+
120119a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ+)
121120, 76logled 26606 . . . . . 6 (𝜑 → (2 ≤ 𝑃 ↔ (log‘2) ≤ (log‘𝑃)))
12270, 121mpbid 231 . . . . 5 (𝜑 → (log‘2) ≤ (log‘𝑃))
123113, 114, 116, 118, 122lediv2ad 13073 . . . 4 (𝜑 → ((log‘𝐵) / (log‘𝑃)) ≤ ((log‘𝐵) / (log‘2)))
124 relogbval 26749 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℝ+) → (𝑃 logb 𝐵) = ((log‘𝐵) / (log‘𝑃)))
12568, 115, 124syl2anc 582 . . . . 5 (𝜑 → (𝑃 logb 𝐵) = ((log‘𝐵) / (log‘𝑃)))
126125eqcomd 2731 . . . 4 (𝜑 → ((log‘𝐵) / (log‘𝑃)) = (𝑃 logb 𝐵))
12765uzidd 12871 . . . . . 6 (𝜑 → 2 ∈ (ℤ‘2))
128 relogbval 26749 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℝ+) → (2 logb 𝐵) = ((log‘𝐵) / (log‘2)))
129127, 115, 128syl2anc 582 . . . . 5 (𝜑 → (2 logb 𝐵) = ((log‘𝐵) / (log‘2)))
130129eqcomd 2731 . . . 4 (𝜑 → ((log‘𝐵) / (log‘2)) = (2 logb 𝐵))
131123, 126, 1303brtr3d 5180 . . 3 (𝜑 → (𝑃 logb 𝐵) ≤ (2 logb 𝐵))
13215, 74, 75, 112, 131letrd 11403 . 2 (𝜑𝐾 ≤ (2 logb 𝐵))
133 flge 13806 . . 3 (((2 logb 𝐵) ∈ ℝ ∧ 𝐾 ∈ ℤ) → (𝐾 ≤ (2 logb 𝐵) ↔ 𝐾 ≤ (⌊‘(2 logb 𝐵))))
13475, 14, 133syl2anc 582 . 2 (𝜑 → (𝐾 ≤ (2 logb 𝐵) ↔ 𝐾 ≤ (⌊‘(2 logb 𝐵))))
135132, 134mpbid 231 1 (𝜑𝐾 ≤ (⌊‘(2 logb 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  {crab 3418  cdif 3941  {csn 4630  {cpr 4632   class class class wbr 5149  cfv 6549  (class class class)co 7419  infcinf 9466  cc 11138  cr 11139  0cc0 11140  1c1 11141   · cmul 11145   < clt 11280  cle 11281  cmin 11476   / cdiv 11903  cn 12245  2c2 12300  3c3 12301  5c5 12303  9c9 12307  0cn0 12505  cz 12591  cuz 12855  +crp 13009  ...cfz 13519  cfl 13791  cceil 13792  cexp 14062  cprod 15885  cdvds 16234  cprime 16645   pCnt cpc 16808  logclog 26533  𝑐ccxp 26534   logb clogb 26741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cc 10460  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-symdif 4241  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-ofr 7686  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-omul 8492  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-dju 9926  df-card 9964  df-acn 9967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ioc 13364  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-ceil 13794  df-mod 13871  df-seq 14003  df-exp 14063  df-fac 14269  df-bc 14298  df-hash 14326  df-shft 15050  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-limsup 15451  df-clim 15468  df-rlim 15469  df-sum 15669  df-prod 15886  df-ef 16047  df-e 16048  df-sin 16049  df-cos 16050  df-pi 16052  df-dvds 16235  df-gcd 16473  df-lcm 16564  df-lcmf 16565  df-prm 16646  df-pc 16809  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-lp 23084  df-perf 23085  df-cn 23175  df-cnp 23176  df-haus 23263  df-cmp 23335  df-tx 23510  df-hmeo 23703  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-xms 24270  df-ms 24271  df-tms 24272  df-cncf 24842  df-ovol 25437  df-vol 25438  df-mbf 25592  df-itg1 25593  df-itg2 25594  df-ibl 25595  df-itg 25596  df-0p 25643  df-limc 25839  df-dv 25840  df-log 26535  df-cxp 26536  df-logb 26742
This theorem is referenced by:  aks4d1p7d1  41685
  Copyright terms: Public domain W3C validator