| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nffvmpt1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| nffvmpt1 | ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmpt1 5206 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 3 | 1, 2 | nffv 6868 | 1 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2876 ↦ cmpt 5188 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-iota 6464 df-fv 6519 |
| This theorem is referenced by: fvmptt 6988 fmptco 7101 offval2f 7668 offval2 7673 ofrfval2 7674 mptelixpg 8908 dom2lem 8963 cantnflem1 9642 acni2 9999 axcc2 10390 seqof2 14025 rlim2 15462 ello1mpt 15487 o1compt 15553 sumfc 15675 fsum 15686 fsumf1o 15689 sumss 15690 fsumcvg2 15693 fsumadd 15706 isummulc2 15728 fsummulc2 15750 fsumrelem 15773 isumshft 15805 zprod 15903 fprod 15907 prodfc 15911 fprodf1o 15912 fprodmul 15926 fproddiv 15927 iserodd 16806 prdsbas3 17444 prdsdsval2 17447 invfuc 17939 yonedalem4b 18237 gsumdixp 20228 evlslem4 21983 elptr2 23461 ptunimpt 23482 ptcldmpt 23501 ptclsg 23502 txcnp 23507 ptcnplem 23508 cnmpt1t 23552 cnmptk2 23573 flfcnp2 23894 voliun 25455 mbfeqalem1 25542 mbfpos 25552 mbfposb 25554 mbfsup 25565 mbfinf 25566 mbflim 25569 i1fposd 25608 isibl2 25667 itgmpt 25684 itgeqa 25715 itggt0 25745 itgcn 25746 limcmpt 25784 lhop2 25920 itgsubstlem 25955 itgsubst 25956 elplyd 26107 coeeq2 26147 dgrle 26148 ulmss 26306 itgulm2 26318 leibpi 26852 rlimcnp 26875 o1cxp 26885 lgamgulmlem2 26940 lgamgulmlem6 26944 fmptcof2 32581 itggt0cn 37684 elrfirn2 42684 eq0rabdioph 42764 monotoddzz 42932 aomclem8 43050 fmuldfeq 45581 vonioo 46680 |
| Copyright terms: Public domain | W3C validator |