| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nffvmpt1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| nffvmpt1 | ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmpt1 5201 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 3 | 1, 2 | nffv 6850 | 1 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2876 ↦ cmpt 5183 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-iota 6452 df-fv 6507 |
| This theorem is referenced by: fvmptt 6970 fmptco 7083 offval2f 7648 offval2 7653 ofrfval2 7654 mptelixpg 8885 dom2lem 8940 cantnflem1 9618 acni2 9975 axcc2 10366 seqof2 14001 rlim2 15438 ello1mpt 15463 o1compt 15529 sumfc 15651 fsum 15662 fsumf1o 15665 sumss 15666 fsumcvg2 15669 fsumadd 15682 isummulc2 15704 fsummulc2 15726 fsumrelem 15749 isumshft 15781 zprod 15879 fprod 15883 prodfc 15887 fprodf1o 15888 fprodmul 15902 fproddiv 15903 iserodd 16782 prdsbas3 17420 prdsdsval2 17423 invfuc 17915 yonedalem4b 18213 gsumdixp 20204 evlslem4 21959 elptr2 23437 ptunimpt 23458 ptcldmpt 23477 ptclsg 23478 txcnp 23483 ptcnplem 23484 cnmpt1t 23528 cnmptk2 23549 flfcnp2 23870 voliun 25431 mbfeqalem1 25518 mbfpos 25528 mbfposb 25530 mbfsup 25541 mbfinf 25542 mbflim 25545 i1fposd 25584 isibl2 25643 itgmpt 25660 itgeqa 25691 itggt0 25721 itgcn 25722 limcmpt 25760 lhop2 25896 itgsubstlem 25931 itgsubst 25932 elplyd 26083 coeeq2 26123 dgrle 26124 ulmss 26282 itgulm2 26294 leibpi 26828 rlimcnp 26851 o1cxp 26861 lgamgulmlem2 26916 lgamgulmlem6 26920 fmptcof2 32554 itggt0cn 37657 elrfirn2 42657 eq0rabdioph 42737 monotoddzz 42905 aomclem8 43023 fmuldfeq 45554 vonioo 46653 |
| Copyright terms: Public domain | W3C validator |