| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nffvmpt1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| nffvmpt1 | ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmpt1 5194 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | nfcv 2895 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 3 | 1, 2 | nffv 6841 | 1 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2880 ↦ cmpt 5176 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-iota 6445 df-fv 6497 |
| This theorem is referenced by: fvmptt 6958 fmptco 7071 offval2f 7634 offval2 7639 ofrfval2 7640 mptelixpg 8869 dom2lem 8925 cantnflem1 9590 acni2 9948 axcc2 10339 seqof2 13974 rlim2 15410 ello1mpt 15435 o1compt 15501 sumfc 15623 fsum 15634 fsumf1o 15637 sumss 15638 fsumcvg2 15641 fsumadd 15654 isummulc2 15676 fsummulc2 15698 fsumrelem 15721 isumshft 15753 zprod 15851 fprod 15855 prodfc 15859 fprodf1o 15860 fprodmul 15874 fproddiv 15875 iserodd 16754 prdsbas3 17392 prdsdsval2 17395 invfuc 17892 yonedalem4b 18190 gsumdixp 20245 evlslem4 22022 elptr2 23509 ptunimpt 23530 ptcldmpt 23549 ptclsg 23550 txcnp 23555 ptcnplem 23556 cnmpt1t 23600 cnmptk2 23621 flfcnp2 23942 voliun 25502 mbfeqalem1 25589 mbfpos 25599 mbfposb 25601 mbfsup 25612 mbfinf 25613 mbflim 25616 i1fposd 25655 isibl2 25714 itgmpt 25731 itgeqa 25762 itggt0 25792 itgcn 25793 limcmpt 25831 lhop2 25967 itgsubstlem 26002 itgsubst 26003 elplyd 26154 coeeq2 26194 dgrle 26195 ulmss 26353 itgulm2 26365 leibpi 26899 rlimcnp 26922 o1cxp 26932 lgamgulmlem2 26987 lgamgulmlem6 26991 fmptcof2 32661 itggt0cn 37803 elrfirn2 42853 eq0rabdioph 42933 monotoddzz 43100 aomclem8 43218 fmuldfeq 45745 vonioo 46842 |
| Copyright terms: Public domain | W3C validator |