Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nffvmpt1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
nffvmpt1 | ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmpt1 5178 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | nfcv 2906 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | 1, 2 | nffv 6766 | 1 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2886 ↦ cmpt 5153 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-iota 6376 df-fv 6426 |
This theorem is referenced by: fvmptt 6877 fmptco 6983 offval2f 7526 offval2 7531 ofrfval2 7532 mptelixpg 8681 dom2lem 8735 cantnflem1 9377 acni2 9733 axcc2 10124 seqof2 13709 rlim2 15133 ello1mpt 15158 o1compt 15224 sumfc 15349 fsum 15360 fsumf1o 15363 sumss 15364 fsumcvg2 15367 fsumadd 15380 isummulc2 15402 fsummulc2 15424 fsumrelem 15447 isumshft 15479 zprod 15575 fprod 15579 prodfc 15583 fprodf1o 15584 fprodmul 15598 fproddiv 15599 iserodd 16464 prdsbas3 17109 prdsdsval2 17112 invfuc 17608 yonedalem4b 17910 gsumdixp 19763 evlslem4 21194 elptr2 22633 ptunimpt 22654 ptcldmpt 22673 ptclsg 22674 txcnp 22679 ptcnplem 22680 cnmpt1t 22724 cnmptk2 22745 flfcnp2 23066 voliun 24623 mbfeqalem1 24710 mbfpos 24720 mbfposb 24722 mbfsup 24733 mbfinf 24734 mbflim 24737 i1fposd 24777 isibl2 24836 itgmpt 24852 itgeqa 24883 itggt0 24913 itgcn 24914 limcmpt 24952 lhop2 25084 itgsubstlem 25117 itgsubst 25118 elplyd 25268 coeeq2 25308 dgrle 25309 ulmss 25461 itgulm2 25473 leibpi 25997 rlimcnp 26020 o1cxp 26029 lgamgulmlem2 26084 lgamgulmlem6 26088 fmptcof2 30896 itggt0cn 35774 elrfirn2 40434 eq0rabdioph 40514 monotoddzz 40681 aomclem8 40802 fmuldfeq 43014 vonioo 44110 |
Copyright terms: Public domain | W3C validator |