![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nffvmpt1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
nffvmpt1 | ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmpt1 5274 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | nfcv 2908 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | 1, 2 | nffv 6930 | 1 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2893 ↦ cmpt 5249 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-iota 6525 df-fv 6581 |
This theorem is referenced by: fvmptt 7049 fmptco 7163 offval2f 7729 offval2 7734 ofrfval2 7735 mptelixpg 8993 dom2lem 9052 cantnflem1 9758 acni2 10115 axcc2 10506 seqof2 14111 rlim2 15542 ello1mpt 15567 o1compt 15633 sumfc 15757 fsum 15768 fsumf1o 15771 sumss 15772 fsumcvg2 15775 fsumadd 15788 isummulc2 15810 fsummulc2 15832 fsumrelem 15855 isumshft 15887 zprod 15985 fprod 15989 prodfc 15993 fprodf1o 15994 fprodmul 16008 fproddiv 16009 iserodd 16882 prdsbas3 17541 prdsdsval2 17544 invfuc 18044 yonedalem4b 18346 gsumdixp 20342 evlslem4 22123 elptr2 23603 ptunimpt 23624 ptcldmpt 23643 ptclsg 23644 txcnp 23649 ptcnplem 23650 cnmpt1t 23694 cnmptk2 23715 flfcnp2 24036 voliun 25608 mbfeqalem1 25695 mbfpos 25705 mbfposb 25707 mbfsup 25718 mbfinf 25719 mbflim 25722 i1fposd 25762 isibl2 25821 itgmpt 25838 itgeqa 25869 itggt0 25899 itgcn 25900 limcmpt 25938 lhop2 26074 itgsubstlem 26109 itgsubst 26110 elplyd 26261 coeeq2 26301 dgrle 26302 ulmss 26458 itgulm2 26470 leibpi 27003 rlimcnp 27026 o1cxp 27036 lgamgulmlem2 27091 lgamgulmlem6 27095 fmptcof2 32675 itggt0cn 37650 elrfirn2 42652 eq0rabdioph 42732 monotoddzz 42900 aomclem8 43018 fmuldfeq 45504 vonioo 46603 |
Copyright terms: Public domain | W3C validator |