| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nffvmpt1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| nffvmpt1 | ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmpt1 5194 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 3 | 1, 2 | nffv 6836 | 1 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2876 ↦ cmpt 5176 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-iota 6442 df-fv 6494 |
| This theorem is referenced by: fvmptt 6954 fmptco 7067 offval2f 7632 offval2 7637 ofrfval2 7638 mptelixpg 8869 dom2lem 8924 cantnflem1 9604 acni2 9959 axcc2 10350 seqof2 13986 rlim2 15422 ello1mpt 15447 o1compt 15513 sumfc 15635 fsum 15646 fsumf1o 15649 sumss 15650 fsumcvg2 15653 fsumadd 15666 isummulc2 15688 fsummulc2 15710 fsumrelem 15733 isumshft 15765 zprod 15863 fprod 15867 prodfc 15871 fprodf1o 15872 fprodmul 15886 fproddiv 15887 iserodd 16766 prdsbas3 17404 prdsdsval2 17407 invfuc 17903 yonedalem4b 18201 gsumdixp 20223 evlslem4 22000 elptr2 23478 ptunimpt 23499 ptcldmpt 23518 ptclsg 23519 txcnp 23524 ptcnplem 23525 cnmpt1t 23569 cnmptk2 23590 flfcnp2 23911 voliun 25472 mbfeqalem1 25559 mbfpos 25569 mbfposb 25571 mbfsup 25582 mbfinf 25583 mbflim 25586 i1fposd 25625 isibl2 25684 itgmpt 25701 itgeqa 25732 itggt0 25762 itgcn 25763 limcmpt 25801 lhop2 25937 itgsubstlem 25972 itgsubst 25973 elplyd 26124 coeeq2 26164 dgrle 26165 ulmss 26323 itgulm2 26335 leibpi 26869 rlimcnp 26892 o1cxp 26902 lgamgulmlem2 26957 lgamgulmlem6 26961 fmptcof2 32619 itggt0cn 37689 elrfirn2 42689 eq0rabdioph 42769 monotoddzz 42936 aomclem8 43054 fmuldfeq 45584 vonioo 46683 |
| Copyright terms: Public domain | W3C validator |