Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nffvmpt1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
nffvmpt1 | ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmpt1 5182 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | nfcv 2907 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | 1, 2 | nffv 6784 | 1 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2887 ↦ cmpt 5157 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-iota 6391 df-fv 6441 |
This theorem is referenced by: fvmptt 6895 fmptco 7001 offval2f 7548 offval2 7553 ofrfval2 7554 mptelixpg 8723 dom2lem 8780 cantnflem1 9447 acni2 9802 axcc2 10193 seqof2 13781 rlim2 15205 ello1mpt 15230 o1compt 15296 sumfc 15421 fsum 15432 fsumf1o 15435 sumss 15436 fsumcvg2 15439 fsumadd 15452 isummulc2 15474 fsummulc2 15496 fsumrelem 15519 isumshft 15551 zprod 15647 fprod 15651 prodfc 15655 fprodf1o 15656 fprodmul 15670 fproddiv 15671 iserodd 16536 prdsbas3 17192 prdsdsval2 17195 invfuc 17692 yonedalem4b 17994 gsumdixp 19848 evlslem4 21284 elptr2 22725 ptunimpt 22746 ptcldmpt 22765 ptclsg 22766 txcnp 22771 ptcnplem 22772 cnmpt1t 22816 cnmptk2 22837 flfcnp2 23158 voliun 24718 mbfeqalem1 24805 mbfpos 24815 mbfposb 24817 mbfsup 24828 mbfinf 24829 mbflim 24832 i1fposd 24872 isibl2 24931 itgmpt 24947 itgeqa 24978 itggt0 25008 itgcn 25009 limcmpt 25047 lhop2 25179 itgsubstlem 25212 itgsubst 25213 elplyd 25363 coeeq2 25403 dgrle 25404 ulmss 25556 itgulm2 25568 leibpi 26092 rlimcnp 26115 o1cxp 26124 lgamgulmlem2 26179 lgamgulmlem6 26183 fmptcof2 30994 itggt0cn 35847 elrfirn2 40518 eq0rabdioph 40598 monotoddzz 40765 aomclem8 40886 fmuldfeq 43124 vonioo 44220 |
Copyright terms: Public domain | W3C validator |