| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nffvmpt1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| nffvmpt1 | ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmpt1 5209 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | nfcv 2892 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 3 | 1, 2 | nffv 6871 | 1 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2877 ↦ cmpt 5191 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-iota 6467 df-fv 6522 |
| This theorem is referenced by: fvmptt 6991 fmptco 7104 offval2f 7671 offval2 7676 ofrfval2 7677 mptelixpg 8911 dom2lem 8966 cantnflem1 9649 acni2 10006 axcc2 10397 seqof2 14032 rlim2 15469 ello1mpt 15494 o1compt 15560 sumfc 15682 fsum 15693 fsumf1o 15696 sumss 15697 fsumcvg2 15700 fsumadd 15713 isummulc2 15735 fsummulc2 15757 fsumrelem 15780 isumshft 15812 zprod 15910 fprod 15914 prodfc 15918 fprodf1o 15919 fprodmul 15933 fproddiv 15934 iserodd 16813 prdsbas3 17451 prdsdsval2 17454 invfuc 17946 yonedalem4b 18244 gsumdixp 20235 evlslem4 21990 elptr2 23468 ptunimpt 23489 ptcldmpt 23508 ptclsg 23509 txcnp 23514 ptcnplem 23515 cnmpt1t 23559 cnmptk2 23580 flfcnp2 23901 voliun 25462 mbfeqalem1 25549 mbfpos 25559 mbfposb 25561 mbfsup 25572 mbfinf 25573 mbflim 25576 i1fposd 25615 isibl2 25674 itgmpt 25691 itgeqa 25722 itggt0 25752 itgcn 25753 limcmpt 25791 lhop2 25927 itgsubstlem 25962 itgsubst 25963 elplyd 26114 coeeq2 26154 dgrle 26155 ulmss 26313 itgulm2 26325 leibpi 26859 rlimcnp 26882 o1cxp 26892 lgamgulmlem2 26947 lgamgulmlem6 26951 fmptcof2 32588 itggt0cn 37691 elrfirn2 42691 eq0rabdioph 42771 monotoddzz 42939 aomclem8 43057 fmuldfeq 45588 vonioo 46687 |
| Copyright terms: Public domain | W3C validator |