| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nffvmpt1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| nffvmpt1 | ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmpt1 5185 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | nfcv 2894 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 3 | 1, 2 | nffv 6827 | 1 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2879 ↦ cmpt 5167 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-iota 6432 df-fv 6484 |
| This theorem is referenced by: fvmptt 6944 fmptco 7057 offval2f 7620 offval2 7625 ofrfval2 7626 mptelixpg 8854 dom2lem 8909 cantnflem1 9574 acni2 9932 axcc2 10323 seqof2 13962 rlim2 15398 ello1mpt 15423 o1compt 15489 sumfc 15611 fsum 15622 fsumf1o 15625 sumss 15626 fsumcvg2 15629 fsumadd 15642 isummulc2 15664 fsummulc2 15686 fsumrelem 15709 isumshft 15741 zprod 15839 fprod 15843 prodfc 15847 fprodf1o 15848 fprodmul 15862 fproddiv 15863 iserodd 16742 prdsbas3 17380 prdsdsval2 17383 invfuc 17879 yonedalem4b 18177 gsumdixp 20232 evlslem4 22006 elptr2 23484 ptunimpt 23505 ptcldmpt 23524 ptclsg 23525 txcnp 23530 ptcnplem 23531 cnmpt1t 23575 cnmptk2 23596 flfcnp2 23917 voliun 25477 mbfeqalem1 25564 mbfpos 25574 mbfposb 25576 mbfsup 25587 mbfinf 25588 mbflim 25591 i1fposd 25630 isibl2 25689 itgmpt 25706 itgeqa 25737 itggt0 25767 itgcn 25768 limcmpt 25806 lhop2 25942 itgsubstlem 25977 itgsubst 25978 elplyd 26129 coeeq2 26169 dgrle 26170 ulmss 26328 itgulm2 26340 leibpi 26874 rlimcnp 26897 o1cxp 26907 lgamgulmlem2 26962 lgamgulmlem6 26966 fmptcof2 32631 itggt0cn 37730 elrfirn2 42729 eq0rabdioph 42809 monotoddzz 42976 aomclem8 43094 fmuldfeq 45623 vonioo 46720 |
| Copyright terms: Public domain | W3C validator |