![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nffvmpt1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
nffvmpt1 | ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmpt1 5255 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | nfcv 2902 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | 1, 2 | nffv 6916 | 1 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2887 ↦ cmpt 5230 ‘cfv 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-iota 6515 df-fv 6570 |
This theorem is referenced by: fvmptt 7035 fmptco 7148 offval2f 7711 offval2 7716 ofrfval2 7717 mptelixpg 8973 dom2lem 9030 cantnflem1 9726 acni2 10083 axcc2 10474 seqof2 14097 rlim2 15528 ello1mpt 15553 o1compt 15619 sumfc 15741 fsum 15752 fsumf1o 15755 sumss 15756 fsumcvg2 15759 fsumadd 15772 isummulc2 15794 fsummulc2 15816 fsumrelem 15839 isumshft 15871 zprod 15969 fprod 15973 prodfc 15977 fprodf1o 15978 fprodmul 15992 fproddiv 15993 iserodd 16868 prdsbas3 17527 prdsdsval2 17530 invfuc 18030 yonedalem4b 18332 gsumdixp 20332 evlslem4 22117 elptr2 23597 ptunimpt 23618 ptcldmpt 23637 ptclsg 23638 txcnp 23643 ptcnplem 23644 cnmpt1t 23688 cnmptk2 23709 flfcnp2 24030 voliun 25602 mbfeqalem1 25689 mbfpos 25699 mbfposb 25701 mbfsup 25712 mbfinf 25713 mbflim 25716 i1fposd 25756 isibl2 25815 itgmpt 25832 itgeqa 25863 itggt0 25893 itgcn 25894 limcmpt 25932 lhop2 26068 itgsubstlem 26103 itgsubst 26104 elplyd 26255 coeeq2 26295 dgrle 26296 ulmss 26454 itgulm2 26466 leibpi 26999 rlimcnp 27022 o1cxp 27032 lgamgulmlem2 27087 lgamgulmlem6 27091 fmptcof2 32673 itggt0cn 37676 elrfirn2 42683 eq0rabdioph 42763 monotoddzz 42931 aomclem8 43049 fmuldfeq 45538 vonioo 46637 |
Copyright terms: Public domain | W3C validator |