![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nffvmpt1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
nffvmpt1 | ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmpt1 5257 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | nfcv 2904 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | 1, 2 | nffv 6902 | 1 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2884 ↦ cmpt 5232 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-iota 6496 df-fv 6552 |
This theorem is referenced by: fvmptt 7019 fmptco 7127 offval2f 7685 offval2 7690 ofrfval2 7691 mptelixpg 8929 dom2lem 8988 cantnflem1 9684 acni2 10041 axcc2 10432 seqof2 14026 rlim2 15440 ello1mpt 15465 o1compt 15531 sumfc 15655 fsum 15666 fsumf1o 15669 sumss 15670 fsumcvg2 15673 fsumadd 15686 isummulc2 15708 fsummulc2 15730 fsumrelem 15753 isumshft 15785 zprod 15881 fprod 15885 prodfc 15889 fprodf1o 15890 fprodmul 15904 fproddiv 15905 iserodd 16768 prdsbas3 17427 prdsdsval2 17430 invfuc 17927 yonedalem4b 18229 gsumdixp 20131 evlslem4 21637 elptr2 23078 ptunimpt 23099 ptcldmpt 23118 ptclsg 23119 txcnp 23124 ptcnplem 23125 cnmpt1t 23169 cnmptk2 23190 flfcnp2 23511 voliun 25071 mbfeqalem1 25158 mbfpos 25168 mbfposb 25170 mbfsup 25181 mbfinf 25182 mbflim 25185 i1fposd 25225 isibl2 25284 itgmpt 25300 itgeqa 25331 itggt0 25361 itgcn 25362 limcmpt 25400 lhop2 25532 itgsubstlem 25565 itgsubst 25566 elplyd 25716 coeeq2 25756 dgrle 25757 ulmss 25909 itgulm2 25921 leibpi 26447 rlimcnp 26470 o1cxp 26479 lgamgulmlem2 26534 lgamgulmlem6 26538 fmptcof2 31882 itggt0cn 36558 elrfirn2 41434 eq0rabdioph 41514 monotoddzz 41682 aomclem8 41803 fmuldfeq 44299 vonioo 45398 |
Copyright terms: Public domain | W3C validator |