| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nffvmpt1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| nffvmpt1 | ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmpt1 5220 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | nfcv 2898 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 3 | 1, 2 | nffv 6886 | 1 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2883 ↦ cmpt 5201 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-iota 6484 df-fv 6539 |
| This theorem is referenced by: fvmptt 7006 fmptco 7119 offval2f 7686 offval2 7691 ofrfval2 7692 mptelixpg 8949 dom2lem 9006 cantnflem1 9703 acni2 10060 axcc2 10451 seqof2 14078 rlim2 15512 ello1mpt 15537 o1compt 15603 sumfc 15725 fsum 15736 fsumf1o 15739 sumss 15740 fsumcvg2 15743 fsumadd 15756 isummulc2 15778 fsummulc2 15800 fsumrelem 15823 isumshft 15855 zprod 15953 fprod 15957 prodfc 15961 fprodf1o 15962 fprodmul 15976 fproddiv 15977 iserodd 16855 prdsbas3 17495 prdsdsval2 17498 invfuc 17990 yonedalem4b 18288 gsumdixp 20279 evlslem4 22034 elptr2 23512 ptunimpt 23533 ptcldmpt 23552 ptclsg 23553 txcnp 23558 ptcnplem 23559 cnmpt1t 23603 cnmptk2 23624 flfcnp2 23945 voliun 25507 mbfeqalem1 25594 mbfpos 25604 mbfposb 25606 mbfsup 25617 mbfinf 25618 mbflim 25621 i1fposd 25660 isibl2 25719 itgmpt 25736 itgeqa 25767 itggt0 25797 itgcn 25798 limcmpt 25836 lhop2 25972 itgsubstlem 26007 itgsubst 26008 elplyd 26159 coeeq2 26199 dgrle 26200 ulmss 26358 itgulm2 26370 leibpi 26904 rlimcnp 26927 o1cxp 26937 lgamgulmlem2 26992 lgamgulmlem6 26996 fmptcof2 32635 itggt0cn 37714 elrfirn2 42719 eq0rabdioph 42799 monotoddzz 42967 aomclem8 43085 fmuldfeq 45612 vonioo 46711 |
| Copyright terms: Public domain | W3C validator |