![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nffvmpt1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
nffvmpt1 | ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmpt1 5256 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | nfcv 2903 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | 1, 2 | nffv 6901 | 1 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2883 ↦ cmpt 5231 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-iota 6495 df-fv 6551 |
This theorem is referenced by: fvmptt 7018 fmptco 7129 offval2f 7687 offval2 7692 ofrfval2 7693 mptelixpg 8931 dom2lem 8990 cantnflem1 9686 acni2 10043 axcc2 10434 seqof2 14028 rlim2 15442 ello1mpt 15467 o1compt 15533 sumfc 15657 fsum 15668 fsumf1o 15671 sumss 15672 fsumcvg2 15675 fsumadd 15688 isummulc2 15710 fsummulc2 15732 fsumrelem 15755 isumshft 15787 zprod 15883 fprod 15887 prodfc 15891 fprodf1o 15892 fprodmul 15906 fproddiv 15907 iserodd 16770 prdsbas3 17429 prdsdsval2 17432 invfuc 17929 yonedalem4b 18231 gsumdixp 20135 evlslem4 21643 elptr2 23085 ptunimpt 23106 ptcldmpt 23125 ptclsg 23126 txcnp 23131 ptcnplem 23132 cnmpt1t 23176 cnmptk2 23197 flfcnp2 23518 voliun 25078 mbfeqalem1 25165 mbfpos 25175 mbfposb 25177 mbfsup 25188 mbfinf 25189 mbflim 25192 i1fposd 25232 isibl2 25291 itgmpt 25307 itgeqa 25338 itggt0 25368 itgcn 25369 limcmpt 25407 lhop2 25539 itgsubstlem 25572 itgsubst 25573 elplyd 25723 coeeq2 25763 dgrle 25764 ulmss 25916 itgulm2 25928 leibpi 26454 rlimcnp 26477 o1cxp 26486 lgamgulmlem2 26541 lgamgulmlem6 26545 fmptcof2 31920 itggt0cn 36644 elrfirn2 41516 eq0rabdioph 41596 monotoddzz 41764 aomclem8 41885 fmuldfeq 44378 vonioo 45477 |
Copyright terms: Public domain | W3C validator |