| Step | Hyp | Ref
| Expression |
| 1 | | limccl 25910 |
. . . 4
⊢ (𝐹 limℂ 𝐷) ⊆
ℂ |
| 2 | | neglimc.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ (𝐹 limℂ 𝐷)) |
| 3 | 1, 2 | sselid 3981 |
. . 3
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 4 | 3 | negcld 11607 |
. 2
⊢ (𝜑 → -𝐶 ∈ ℂ) |
| 5 | | neglimc.b |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 6 | | neglimc.f |
. . . . . . . . 9
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 7 | 5, 6 | fmptd 7134 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| 8 | 6, 5, 2 | limcmptdm 45650 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| 9 | | limcrcl 25909 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (𝐹 limℂ 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ)) |
| 10 | 2, 9 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ)) |
| 11 | 10 | simp3d 1145 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 12 | 7, 8, 11 | ellimc3 25914 |
. . . . . . 7
⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐷) ↔ (𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+
∃𝑤 ∈
ℝ+ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐶)) < 𝑦)))) |
| 13 | 2, 12 | mpbid 232 |
. . . . . 6
⊢ (𝜑 → (𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+
∃𝑤 ∈
ℝ+ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐶)) < 𝑦))) |
| 14 | 13 | simprd 495 |
. . . . 5
⊢ (𝜑 → ∀𝑦 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐶)) < 𝑦)) |
| 15 | 14 | r19.21bi 3251 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
∃𝑤 ∈
ℝ+ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐶)) < 𝑦)) |
| 16 | | simplll 775 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑣 ∈ 𝐴) → 𝜑) |
| 17 | 16 | 3ad2ant1 1134 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ ℝ+)
∧ 𝑤 ∈
ℝ+) ∧ 𝑣 ∈ 𝐴) ∧ ((𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐶)) < 𝑦) ∧ (𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤)) → 𝜑) |
| 18 | | simp1r 1199 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ ℝ+)
∧ 𝑤 ∈
ℝ+) ∧ 𝑣 ∈ 𝐴) ∧ ((𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐶)) < 𝑦) ∧ (𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤)) → 𝑣 ∈ 𝐴) |
| 19 | | simp3 1139 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ ℝ+)
∧ 𝑤 ∈
ℝ+) ∧ 𝑣 ∈ 𝐴) ∧ ((𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐶)) < 𝑦) ∧ (𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤)) → (𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤)) |
| 20 | | simp2 1138 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ ℝ+)
∧ 𝑤 ∈
ℝ+) ∧ 𝑣 ∈ 𝐴) ∧ ((𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐶)) < 𝑦) ∧ (𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤)) → ((𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐶)) < 𝑦)) |
| 21 | 19, 20 | mpd 15 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ ℝ+)
∧ 𝑤 ∈
ℝ+) ∧ 𝑣 ∈ 𝐴) ∧ ((𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐶)) < 𝑦) ∧ (𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤)) → (abs‘((𝐹‘𝑣) − 𝐶)) < 𝑦) |
| 22 | | nfv 1914 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥(𝜑 ∧ 𝑣 ∈ 𝐴) |
| 23 | | neglimc.g |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ -𝐵) |
| 24 | | nfmpt1 5250 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ -𝐵) |
| 25 | 23, 24 | nfcxfr 2903 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥𝐺 |
| 26 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥𝑣 |
| 27 | 25, 26 | nffv 6916 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥(𝐺‘𝑣) |
| 28 | | nfmpt1 5250 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
| 29 | 6, 28 | nfcxfr 2903 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥𝐹 |
| 30 | 29, 26 | nffv 6916 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥(𝐹‘𝑣) |
| 31 | 30 | nfneg 11504 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥-(𝐹‘𝑣) |
| 32 | 27, 31 | nfeq 2919 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥(𝐺‘𝑣) = -(𝐹‘𝑣) |
| 33 | 22, 32 | nfim 1896 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥((𝜑 ∧ 𝑣 ∈ 𝐴) → (𝐺‘𝑣) = -(𝐹‘𝑣)) |
| 34 | | eleq1w 2824 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑣 → (𝑥 ∈ 𝐴 ↔ 𝑣 ∈ 𝐴)) |
| 35 | 34 | anbi2d 630 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑣 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑣 ∈ 𝐴))) |
| 36 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑣 → (𝐺‘𝑥) = (𝐺‘𝑣)) |
| 37 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑣 → (𝐹‘𝑥) = (𝐹‘𝑣)) |
| 38 | 37 | negeqd 11502 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑣 → -(𝐹‘𝑥) = -(𝐹‘𝑣)) |
| 39 | 36, 38 | eqeq12d 2753 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑣 → ((𝐺‘𝑥) = -(𝐹‘𝑥) ↔ (𝐺‘𝑣) = -(𝐹‘𝑣))) |
| 40 | 35, 39 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑣 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = -(𝐹‘𝑥)) ↔ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (𝐺‘𝑣) = -(𝐹‘𝑣)))) |
| 41 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 42 | 5 | negcld 11607 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ∈ ℂ) |
| 43 | 23 | fvmpt2 7027 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ 𝐴 ∧ -𝐵 ∈ ℂ) → (𝐺‘𝑥) = -𝐵) |
| 44 | 41, 42, 43 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = -𝐵) |
| 45 | 6 | fvmpt2 7027 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℂ) → (𝐹‘𝑥) = 𝐵) |
| 46 | 41, 5, 45 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
| 47 | 46 | negeqd 11502 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(𝐹‘𝑥) = -𝐵) |
| 48 | 44, 47 | eqtr4d 2780 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = -(𝐹‘𝑥)) |
| 49 | 33, 40, 48 | chvarfv 2240 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (𝐺‘𝑣) = -(𝐹‘𝑣)) |
| 50 | 49 | oveq1d 7446 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ((𝐺‘𝑣) − -𝐶) = (-(𝐹‘𝑣) − -𝐶)) |
| 51 | 7 | ffvelcdmda 7104 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (𝐹‘𝑣) ∈ ℂ) |
| 52 | 3 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 53 | 51, 52 | negsubdi3d 45305 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → -((𝐹‘𝑣) − 𝐶) = (-(𝐹‘𝑣) − -𝐶)) |
| 54 | 50, 53 | eqtr4d 2780 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ((𝐺‘𝑣) − -𝐶) = -((𝐹‘𝑣) − 𝐶)) |
| 55 | 54 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (abs‘((𝐺‘𝑣) − -𝐶)) = (abs‘-((𝐹‘𝑣) − 𝐶))) |
| 56 | 51, 52 | subcld 11620 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ((𝐹‘𝑣) − 𝐶) ∈ ℂ) |
| 57 | 56 | absnegd 15488 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (abs‘-((𝐹‘𝑣) − 𝐶)) = (abs‘((𝐹‘𝑣) − 𝐶))) |
| 58 | 55, 57 | eqtrd 2777 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (abs‘((𝐺‘𝑣) − -𝐶)) = (abs‘((𝐹‘𝑣) − 𝐶))) |
| 59 | 58 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑣 ∈ 𝐴) ∧ (abs‘((𝐹‘𝑣) − 𝐶)) < 𝑦) → (abs‘((𝐺‘𝑣) − -𝐶)) = (abs‘((𝐹‘𝑣) − 𝐶))) |
| 60 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑣 ∈ 𝐴) ∧ (abs‘((𝐹‘𝑣) − 𝐶)) < 𝑦) → (abs‘((𝐹‘𝑣) − 𝐶)) < 𝑦) |
| 61 | 59, 60 | eqbrtrd 5165 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑣 ∈ 𝐴) ∧ (abs‘((𝐹‘𝑣) − 𝐶)) < 𝑦) → (abs‘((𝐺‘𝑣) − -𝐶)) < 𝑦) |
| 62 | 17, 18, 21, 61 | syl21anc 838 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ ℝ+)
∧ 𝑤 ∈
ℝ+) ∧ 𝑣 ∈ 𝐴) ∧ ((𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐶)) < 𝑦) ∧ (𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤)) → (abs‘((𝐺‘𝑣) − -𝐶)) < 𝑦) |
| 63 | 62 | 3exp 1120 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑣 ∈ 𝐴) → (((𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐶)) < 𝑦) → ((𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤) → (abs‘((𝐺‘𝑣) − -𝐶)) < 𝑦))) |
| 64 | 63 | ralimdva 3167 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
→ (∀𝑣 ∈
𝐴 ((𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐶)) < 𝑦) → ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤) → (abs‘((𝐺‘𝑣) − -𝐶)) < 𝑦))) |
| 65 | 64 | reximdva 3168 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
(∃𝑤 ∈
ℝ+ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐶)) < 𝑦) → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤) → (abs‘((𝐺‘𝑣) − -𝐶)) < 𝑦))) |
| 66 | 15, 65 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
∃𝑤 ∈
ℝ+ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤) → (abs‘((𝐺‘𝑣) − -𝐶)) < 𝑦)) |
| 67 | 66 | ralrimiva 3146 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤) → (abs‘((𝐺‘𝑣) − -𝐶)) < 𝑦)) |
| 68 | 42, 23 | fmptd 7134 |
. . 3
⊢ (𝜑 → 𝐺:𝐴⟶ℂ) |
| 69 | 68, 8, 11 | ellimc3 25914 |
. 2
⊢ (𝜑 → (-𝐶 ∈ (𝐺 limℂ 𝐷) ↔ (-𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+
∃𝑤 ∈
ℝ+ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐷 ∧ (abs‘(𝑣 − 𝐷)) < 𝑤) → (abs‘((𝐺‘𝑣) − -𝐶)) < 𝑦)))) |
| 70 | 4, 67, 69 | mpbir2and 713 |
1
⊢ (𝜑 → -𝐶 ∈ (𝐺 limℂ 𝐷)) |