Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neglimc Structured version   Visualization version   GIF version

Theorem neglimc 43878
Description: Limit of the negative function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
neglimc.f 𝐹 = (𝑥𝐴𝐵)
neglimc.g 𝐺 = (𝑥𝐴 ↦ -𝐵)
neglimc.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
neglimc.c (𝜑𝐶 ∈ (𝐹 lim 𝐷))
Assertion
Ref Expression
neglimc (𝜑 → -𝐶 ∈ (𝐺 lim 𝐷))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem neglimc
Dummy variables 𝑣 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 25239 . . . 4 (𝐹 lim 𝐷) ⊆ ℂ
2 neglimc.c . . . 4 (𝜑𝐶 ∈ (𝐹 lim 𝐷))
31, 2sselid 3942 . . 3 (𝜑𝐶 ∈ ℂ)
43negcld 11499 . 2 (𝜑 → -𝐶 ∈ ℂ)
5 neglimc.b . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
6 neglimc.f . . . . . . . . 9 𝐹 = (𝑥𝐴𝐵)
75, 6fmptd 7062 . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
86, 5, 2limcmptdm 43866 . . . . . . . 8 (𝜑𝐴 ⊆ ℂ)
9 limcrcl 25238 . . . . . . . . . 10 (𝐶 ∈ (𝐹 lim 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
102, 9syl 17 . . . . . . . . 9 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
1110simp3d 1144 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
127, 8, 11ellimc3 25243 . . . . . . 7 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐷) ↔ (𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦))))
132, 12mpbid 231 . . . . . 6 (𝜑 → (𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦)))
1413simprd 496 . . . . 5 (𝜑 → ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦))
1514r19.21bi 3234 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦))
16 simplll 773 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) → 𝜑)
17163ad2ant1 1133 . . . . . . . 8 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → 𝜑)
18 simp1r 1198 . . . . . . . 8 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → 𝑣𝐴)
19 simp3 1138 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤))
20 simp2 1137 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦))
2119, 20mpd 15 . . . . . . . 8 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦)
22 nfv 1917 . . . . . . . . . . . . . . . 16 𝑥(𝜑𝑣𝐴)
23 neglimc.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (𝑥𝐴 ↦ -𝐵)
24 nfmpt1 5213 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑥𝐴 ↦ -𝐵)
2523, 24nfcxfr 2905 . . . . . . . . . . . . . . . . . 18 𝑥𝐺
26 nfcv 2907 . . . . . . . . . . . . . . . . . 18 𝑥𝑣
2725, 26nffv 6852 . . . . . . . . . . . . . . . . 17 𝑥(𝐺𝑣)
28 nfmpt1 5213 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝑥𝐴𝐵)
296, 28nfcxfr 2905 . . . . . . . . . . . . . . . . . . 19 𝑥𝐹
3029, 26nffv 6852 . . . . . . . . . . . . . . . . . 18 𝑥(𝐹𝑣)
3130nfneg 11397 . . . . . . . . . . . . . . . . 17 𝑥-(𝐹𝑣)
3227, 31nfeq 2920 . . . . . . . . . . . . . . . 16 𝑥(𝐺𝑣) = -(𝐹𝑣)
3322, 32nfim 1899 . . . . . . . . . . . . . . 15 𝑥((𝜑𝑣𝐴) → (𝐺𝑣) = -(𝐹𝑣))
34 eleq1w 2820 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → (𝑥𝐴𝑣𝐴))
3534anbi2d 629 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑣 → ((𝜑𝑥𝐴) ↔ (𝜑𝑣𝐴)))
36 fveq2 6842 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → (𝐺𝑥) = (𝐺𝑣))
37 fveq2 6842 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → (𝐹𝑥) = (𝐹𝑣))
3837negeqd 11395 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → -(𝐹𝑥) = -(𝐹𝑣))
3936, 38eqeq12d 2752 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑣 → ((𝐺𝑥) = -(𝐹𝑥) ↔ (𝐺𝑣) = -(𝐹𝑣)))
4035, 39imbi12d 344 . . . . . . . . . . . . . . 15 (𝑥 = 𝑣 → (((𝜑𝑥𝐴) → (𝐺𝑥) = -(𝐹𝑥)) ↔ ((𝜑𝑣𝐴) → (𝐺𝑣) = -(𝐹𝑣))))
41 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝑥𝐴)
425negcld 11499 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
4323fvmpt2 6959 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴 ∧ -𝐵 ∈ ℂ) → (𝐺𝑥) = -𝐵)
4441, 42, 43syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐺𝑥) = -𝐵)
456fvmpt2 6959 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐴𝐵 ∈ ℂ) → (𝐹𝑥) = 𝐵)
4641, 5, 45syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
4746negeqd 11395 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → -(𝐹𝑥) = -𝐵)
4844, 47eqtr4d 2779 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (𝐺𝑥) = -(𝐹𝑥))
4933, 40, 48chvarfv 2233 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐴) → (𝐺𝑣) = -(𝐹𝑣))
5049oveq1d 7372 . . . . . . . . . . . . 13 ((𝜑𝑣𝐴) → ((𝐺𝑣) − -𝐶) = (-(𝐹𝑣) − -𝐶))
517ffvelcdmda 7035 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐴) → (𝐹𝑣) ∈ ℂ)
523adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐴) → 𝐶 ∈ ℂ)
5351, 52negsubdi3d 43517 . . . . . . . . . . . . 13 ((𝜑𝑣𝐴) → -((𝐹𝑣) − 𝐶) = (-(𝐹𝑣) − -𝐶))
5450, 53eqtr4d 2779 . . . . . . . . . . . 12 ((𝜑𝑣𝐴) → ((𝐺𝑣) − -𝐶) = -((𝐹𝑣) − 𝐶))
5554fveq2d 6846 . . . . . . . . . . 11 ((𝜑𝑣𝐴) → (abs‘((𝐺𝑣) − -𝐶)) = (abs‘-((𝐹𝑣) − 𝐶)))
5651, 52subcld 11512 . . . . . . . . . . . 12 ((𝜑𝑣𝐴) → ((𝐹𝑣) − 𝐶) ∈ ℂ)
5756absnegd 15334 . . . . . . . . . . 11 ((𝜑𝑣𝐴) → (abs‘-((𝐹𝑣) − 𝐶)) = (abs‘((𝐹𝑣) − 𝐶)))
5855, 57eqtrd 2776 . . . . . . . . . 10 ((𝜑𝑣𝐴) → (abs‘((𝐺𝑣) − -𝐶)) = (abs‘((𝐹𝑣) − 𝐶)))
5958adantr 481 . . . . . . . . 9 (((𝜑𝑣𝐴) ∧ (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → (abs‘((𝐺𝑣) − -𝐶)) = (abs‘((𝐹𝑣) − 𝐶)))
60 simpr 485 . . . . . . . . 9 (((𝜑𝑣𝐴) ∧ (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦)
6159, 60eqbrtrd 5127 . . . . . . . 8 (((𝜑𝑣𝐴) ∧ (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)
6217, 18, 21, 61syl21anc 836 . . . . . . 7 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)
63623exp 1119 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) → (((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)))
6463ralimdva 3164 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) → (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)))
6564reximdva 3165 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)))
6615, 65mpd 15 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦))
6766ralrimiva 3143 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦))
6842, 23fmptd 7062 . . 3 (𝜑𝐺:𝐴⟶ℂ)
6968, 8, 11ellimc3 25243 . 2 (𝜑 → (-𝐶 ∈ (𝐺 lim 𝐷) ↔ (-𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦))))
704, 67, 69mpbir2and 711 1 (𝜑 → -𝐶 ∈ (𝐺 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  wss 3910   class class class wbr 5105  cmpt 5188  dom cdm 5633  wf 6492  cfv 6496  (class class class)co 7357  cc 11049   < clt 11189  cmin 11385  -cneg 11386  +crp 12915  abscabs 15119   lim climc 25226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-rest 17304  df-topn 17305  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cnp 22579  df-xms 23673  df-ms 23674  df-limc 25230
This theorem is referenced by:  sublimc  43883  reclimc  43884
  Copyright terms: Public domain W3C validator