Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neglimc Structured version   Visualization version   GIF version

Theorem neglimc 45632
Description: Limit of the negative function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
neglimc.f 𝐹 = (𝑥𝐴𝐵)
neglimc.g 𝐺 = (𝑥𝐴 ↦ -𝐵)
neglimc.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
neglimc.c (𝜑𝐶 ∈ (𝐹 lim 𝐷))
Assertion
Ref Expression
neglimc (𝜑 → -𝐶 ∈ (𝐺 lim 𝐷))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem neglimc
Dummy variables 𝑣 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 25792 . . . 4 (𝐹 lim 𝐷) ⊆ ℂ
2 neglimc.c . . . 4 (𝜑𝐶 ∈ (𝐹 lim 𝐷))
31, 2sselid 3935 . . 3 (𝜑𝐶 ∈ ℂ)
43negcld 11480 . 2 (𝜑 → -𝐶 ∈ ℂ)
5 neglimc.b . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
6 neglimc.f . . . . . . . . 9 𝐹 = (𝑥𝐴𝐵)
75, 6fmptd 7052 . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
86, 5, 2limcmptdm 45620 . . . . . . . 8 (𝜑𝐴 ⊆ ℂ)
9 limcrcl 25791 . . . . . . . . . 10 (𝐶 ∈ (𝐹 lim 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
102, 9syl 17 . . . . . . . . 9 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
1110simp3d 1144 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
127, 8, 11ellimc3 25796 . . . . . . 7 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐷) ↔ (𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦))))
132, 12mpbid 232 . . . . . 6 (𝜑 → (𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦)))
1413simprd 495 . . . . 5 (𝜑 → ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦))
1514r19.21bi 3221 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦))
16 simplll 774 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) → 𝜑)
17163ad2ant1 1133 . . . . . . . 8 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → 𝜑)
18 simp1r 1199 . . . . . . . 8 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → 𝑣𝐴)
19 simp3 1138 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤))
20 simp2 1137 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦))
2119, 20mpd 15 . . . . . . . 8 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦)
22 nfv 1914 . . . . . . . . . . . . . . . 16 𝑥(𝜑𝑣𝐴)
23 neglimc.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (𝑥𝐴 ↦ -𝐵)
24 nfmpt1 5194 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑥𝐴 ↦ -𝐵)
2523, 24nfcxfr 2889 . . . . . . . . . . . . . . . . . 18 𝑥𝐺
26 nfcv 2891 . . . . . . . . . . . . . . . . . 18 𝑥𝑣
2725, 26nffv 6836 . . . . . . . . . . . . . . . . 17 𝑥(𝐺𝑣)
28 nfmpt1 5194 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝑥𝐴𝐵)
296, 28nfcxfr 2889 . . . . . . . . . . . . . . . . . . 19 𝑥𝐹
3029, 26nffv 6836 . . . . . . . . . . . . . . . . . 18 𝑥(𝐹𝑣)
3130nfneg 11377 . . . . . . . . . . . . . . . . 17 𝑥-(𝐹𝑣)
3227, 31nfeq 2905 . . . . . . . . . . . . . . . 16 𝑥(𝐺𝑣) = -(𝐹𝑣)
3322, 32nfim 1896 . . . . . . . . . . . . . . 15 𝑥((𝜑𝑣𝐴) → (𝐺𝑣) = -(𝐹𝑣))
34 eleq1w 2811 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → (𝑥𝐴𝑣𝐴))
3534anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑣 → ((𝜑𝑥𝐴) ↔ (𝜑𝑣𝐴)))
36 fveq2 6826 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → (𝐺𝑥) = (𝐺𝑣))
37 fveq2 6826 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → (𝐹𝑥) = (𝐹𝑣))
3837negeqd 11375 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → -(𝐹𝑥) = -(𝐹𝑣))
3936, 38eqeq12d 2745 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑣 → ((𝐺𝑥) = -(𝐹𝑥) ↔ (𝐺𝑣) = -(𝐹𝑣)))
4035, 39imbi12d 344 . . . . . . . . . . . . . . 15 (𝑥 = 𝑣 → (((𝜑𝑥𝐴) → (𝐺𝑥) = -(𝐹𝑥)) ↔ ((𝜑𝑣𝐴) → (𝐺𝑣) = -(𝐹𝑣))))
41 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝑥𝐴)
425negcld 11480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
4323fvmpt2 6945 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴 ∧ -𝐵 ∈ ℂ) → (𝐺𝑥) = -𝐵)
4441, 42, 43syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐺𝑥) = -𝐵)
456fvmpt2 6945 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐴𝐵 ∈ ℂ) → (𝐹𝑥) = 𝐵)
4641, 5, 45syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
4746negeqd 11375 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → -(𝐹𝑥) = -𝐵)
4844, 47eqtr4d 2767 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (𝐺𝑥) = -(𝐹𝑥))
4933, 40, 48chvarfv 2241 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐴) → (𝐺𝑣) = -(𝐹𝑣))
5049oveq1d 7368 . . . . . . . . . . . . 13 ((𝜑𝑣𝐴) → ((𝐺𝑣) − -𝐶) = (-(𝐹𝑣) − -𝐶))
517ffvelcdmda 7022 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐴) → (𝐹𝑣) ∈ ℂ)
523adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐴) → 𝐶 ∈ ℂ)
5351, 52negsubdi3d 45278 . . . . . . . . . . . . 13 ((𝜑𝑣𝐴) → -((𝐹𝑣) − 𝐶) = (-(𝐹𝑣) − -𝐶))
5450, 53eqtr4d 2767 . . . . . . . . . . . 12 ((𝜑𝑣𝐴) → ((𝐺𝑣) − -𝐶) = -((𝐹𝑣) − 𝐶))
5554fveq2d 6830 . . . . . . . . . . 11 ((𝜑𝑣𝐴) → (abs‘((𝐺𝑣) − -𝐶)) = (abs‘-((𝐹𝑣) − 𝐶)))
5651, 52subcld 11493 . . . . . . . . . . . 12 ((𝜑𝑣𝐴) → ((𝐹𝑣) − 𝐶) ∈ ℂ)
5756absnegd 15377 . . . . . . . . . . 11 ((𝜑𝑣𝐴) → (abs‘-((𝐹𝑣) − 𝐶)) = (abs‘((𝐹𝑣) − 𝐶)))
5855, 57eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑣𝐴) → (abs‘((𝐺𝑣) − -𝐶)) = (abs‘((𝐹𝑣) − 𝐶)))
5958adantr 480 . . . . . . . . 9 (((𝜑𝑣𝐴) ∧ (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → (abs‘((𝐺𝑣) − -𝐶)) = (abs‘((𝐹𝑣) − 𝐶)))
60 simpr 484 . . . . . . . . 9 (((𝜑𝑣𝐴) ∧ (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦)
6159, 60eqbrtrd 5117 . . . . . . . 8 (((𝜑𝑣𝐴) ∧ (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)
6217, 18, 21, 61syl21anc 837 . . . . . . 7 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)
63623exp 1119 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) → (((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)))
6463ralimdva 3141 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) → (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)))
6564reximdva 3142 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)))
6615, 65mpd 15 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦))
6766ralrimiva 3121 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦))
6842, 23fmptd 7052 . . 3 (𝜑𝐺:𝐴⟶ℂ)
6968, 8, 11ellimc3 25796 . 2 (𝜑 → (-𝐶 ∈ (𝐺 lim 𝐷) ↔ (-𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦))))
704, 67, 69mpbir2and 713 1 (𝜑 → -𝐶 ∈ (𝐺 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3905   class class class wbr 5095  cmpt 5176  dom cdm 5623  wf 6482  cfv 6486  (class class class)co 7353  cc 11026   < clt 11168  cmin 11365  -cneg 11366  +crp 12911  abscabs 15159   lim climc 25779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9320  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-fz 13429  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-starv 17194  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-rest 17344  df-topn 17345  df-topgen 17365  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cnp 23131  df-xms 24224  df-ms 24225  df-limc 25783
This theorem is referenced by:  sublimc  45637  reclimc  45638
  Copyright terms: Public domain W3C validator