Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neglimc Structured version   Visualization version   GIF version

Theorem neglimc 45662
Description: Limit of the negative function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
neglimc.f 𝐹 = (𝑥𝐴𝐵)
neglimc.g 𝐺 = (𝑥𝐴 ↦ -𝐵)
neglimc.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
neglimc.c (𝜑𝐶 ∈ (𝐹 lim 𝐷))
Assertion
Ref Expression
neglimc (𝜑 → -𝐶 ∈ (𝐺 lim 𝐷))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem neglimc
Dummy variables 𝑣 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 25910 . . . 4 (𝐹 lim 𝐷) ⊆ ℂ
2 neglimc.c . . . 4 (𝜑𝐶 ∈ (𝐹 lim 𝐷))
31, 2sselid 3981 . . 3 (𝜑𝐶 ∈ ℂ)
43negcld 11607 . 2 (𝜑 → -𝐶 ∈ ℂ)
5 neglimc.b . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
6 neglimc.f . . . . . . . . 9 𝐹 = (𝑥𝐴𝐵)
75, 6fmptd 7134 . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
86, 5, 2limcmptdm 45650 . . . . . . . 8 (𝜑𝐴 ⊆ ℂ)
9 limcrcl 25909 . . . . . . . . . 10 (𝐶 ∈ (𝐹 lim 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
102, 9syl 17 . . . . . . . . 9 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
1110simp3d 1145 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
127, 8, 11ellimc3 25914 . . . . . . 7 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐷) ↔ (𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦))))
132, 12mpbid 232 . . . . . 6 (𝜑 → (𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦)))
1413simprd 495 . . . . 5 (𝜑 → ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦))
1514r19.21bi 3251 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦))
16 simplll 775 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) → 𝜑)
17163ad2ant1 1134 . . . . . . . 8 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → 𝜑)
18 simp1r 1199 . . . . . . . 8 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → 𝑣𝐴)
19 simp3 1139 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤))
20 simp2 1138 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦))
2119, 20mpd 15 . . . . . . . 8 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦)
22 nfv 1914 . . . . . . . . . . . . . . . 16 𝑥(𝜑𝑣𝐴)
23 neglimc.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (𝑥𝐴 ↦ -𝐵)
24 nfmpt1 5250 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑥𝐴 ↦ -𝐵)
2523, 24nfcxfr 2903 . . . . . . . . . . . . . . . . . 18 𝑥𝐺
26 nfcv 2905 . . . . . . . . . . . . . . . . . 18 𝑥𝑣
2725, 26nffv 6916 . . . . . . . . . . . . . . . . 17 𝑥(𝐺𝑣)
28 nfmpt1 5250 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝑥𝐴𝐵)
296, 28nfcxfr 2903 . . . . . . . . . . . . . . . . . . 19 𝑥𝐹
3029, 26nffv 6916 . . . . . . . . . . . . . . . . . 18 𝑥(𝐹𝑣)
3130nfneg 11504 . . . . . . . . . . . . . . . . 17 𝑥-(𝐹𝑣)
3227, 31nfeq 2919 . . . . . . . . . . . . . . . 16 𝑥(𝐺𝑣) = -(𝐹𝑣)
3322, 32nfim 1896 . . . . . . . . . . . . . . 15 𝑥((𝜑𝑣𝐴) → (𝐺𝑣) = -(𝐹𝑣))
34 eleq1w 2824 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → (𝑥𝐴𝑣𝐴))
3534anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑣 → ((𝜑𝑥𝐴) ↔ (𝜑𝑣𝐴)))
36 fveq2 6906 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → (𝐺𝑥) = (𝐺𝑣))
37 fveq2 6906 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → (𝐹𝑥) = (𝐹𝑣))
3837negeqd 11502 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → -(𝐹𝑥) = -(𝐹𝑣))
3936, 38eqeq12d 2753 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑣 → ((𝐺𝑥) = -(𝐹𝑥) ↔ (𝐺𝑣) = -(𝐹𝑣)))
4035, 39imbi12d 344 . . . . . . . . . . . . . . 15 (𝑥 = 𝑣 → (((𝜑𝑥𝐴) → (𝐺𝑥) = -(𝐹𝑥)) ↔ ((𝜑𝑣𝐴) → (𝐺𝑣) = -(𝐹𝑣))))
41 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝑥𝐴)
425negcld 11607 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
4323fvmpt2 7027 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴 ∧ -𝐵 ∈ ℂ) → (𝐺𝑥) = -𝐵)
4441, 42, 43syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐺𝑥) = -𝐵)
456fvmpt2 7027 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐴𝐵 ∈ ℂ) → (𝐹𝑥) = 𝐵)
4641, 5, 45syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
4746negeqd 11502 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → -(𝐹𝑥) = -𝐵)
4844, 47eqtr4d 2780 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (𝐺𝑥) = -(𝐹𝑥))
4933, 40, 48chvarfv 2240 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐴) → (𝐺𝑣) = -(𝐹𝑣))
5049oveq1d 7446 . . . . . . . . . . . . 13 ((𝜑𝑣𝐴) → ((𝐺𝑣) − -𝐶) = (-(𝐹𝑣) − -𝐶))
517ffvelcdmda 7104 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐴) → (𝐹𝑣) ∈ ℂ)
523adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐴) → 𝐶 ∈ ℂ)
5351, 52negsubdi3d 45305 . . . . . . . . . . . . 13 ((𝜑𝑣𝐴) → -((𝐹𝑣) − 𝐶) = (-(𝐹𝑣) − -𝐶))
5450, 53eqtr4d 2780 . . . . . . . . . . . 12 ((𝜑𝑣𝐴) → ((𝐺𝑣) − -𝐶) = -((𝐹𝑣) − 𝐶))
5554fveq2d 6910 . . . . . . . . . . 11 ((𝜑𝑣𝐴) → (abs‘((𝐺𝑣) − -𝐶)) = (abs‘-((𝐹𝑣) − 𝐶)))
5651, 52subcld 11620 . . . . . . . . . . . 12 ((𝜑𝑣𝐴) → ((𝐹𝑣) − 𝐶) ∈ ℂ)
5756absnegd 15488 . . . . . . . . . . 11 ((𝜑𝑣𝐴) → (abs‘-((𝐹𝑣) − 𝐶)) = (abs‘((𝐹𝑣) − 𝐶)))
5855, 57eqtrd 2777 . . . . . . . . . 10 ((𝜑𝑣𝐴) → (abs‘((𝐺𝑣) − -𝐶)) = (abs‘((𝐹𝑣) − 𝐶)))
5958adantr 480 . . . . . . . . 9 (((𝜑𝑣𝐴) ∧ (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → (abs‘((𝐺𝑣) − -𝐶)) = (abs‘((𝐹𝑣) − 𝐶)))
60 simpr 484 . . . . . . . . 9 (((𝜑𝑣𝐴) ∧ (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦)
6159, 60eqbrtrd 5165 . . . . . . . 8 (((𝜑𝑣𝐴) ∧ (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)
6217, 18, 21, 61syl21anc 838 . . . . . . 7 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)
63623exp 1120 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) → (((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)))
6463ralimdva 3167 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) → (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)))
6564reximdva 3168 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)))
6615, 65mpd 15 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦))
6766ralrimiva 3146 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦))
6842, 23fmptd 7134 . . 3 (𝜑𝐺:𝐴⟶ℂ)
6968, 8, 11ellimc3 25914 . 2 (𝜑 → (-𝐶 ∈ (𝐺 lim 𝐷) ↔ (-𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦))))
704, 67, 69mpbir2and 713 1 (𝜑 → -𝐶 ∈ (𝐺 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  wss 3951   class class class wbr 5143  cmpt 5225  dom cdm 5685  wf 6557  cfv 6561  (class class class)co 7431  cc 11153   < clt 11295  cmin 11492  -cneg 11493  +crp 13034  abscabs 15273   lim climc 25897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-rest 17467  df-topn 17468  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cnp 23236  df-xms 24330  df-ms 24331  df-limc 25901
This theorem is referenced by:  sublimc  45667  reclimc  45668
  Copyright terms: Public domain W3C validator