MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfposb Structured version   Visualization version   GIF version

Theorem mbfposb 25576
Description: A function is measurable iff its positive and negative parts are measurable. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypothesis
Ref Expression
mbfpos.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
mbfposb (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ↔ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mbfposb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2894 . . . . . . . . 9 𝑥0
2 nfcv 2894 . . . . . . . . 9 𝑥
3 nffvmpt1 6828 . . . . . . . . 9 𝑥((𝑥𝐴𝐵)‘𝑦)
41, 2, 3nfbr 5133 . . . . . . . 8 𝑥0 ≤ ((𝑥𝐴𝐵)‘𝑦)
54, 3, 1nfif 4501 . . . . . . 7 𝑥if(0 ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), 0)
6 nfcv 2894 . . . . . . 7 𝑦if(0 ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), 0)
7 fveq2 6817 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑥𝐴𝐵)‘𝑦) = ((𝑥𝐴𝐵)‘𝑥))
87breq2d 5098 . . . . . . . 8 (𝑦 = 𝑥 → (0 ≤ ((𝑥𝐴𝐵)‘𝑦) ↔ 0 ≤ ((𝑥𝐴𝐵)‘𝑥)))
98, 7ifbieq1d 4495 . . . . . . 7 (𝑦 = 𝑥 → if(0 ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), 0) = if(0 ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), 0))
105, 6, 9cbvmpt 5188 . . . . . 6 (𝑦𝐴 ↦ if(0 ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), 0)) = (𝑥𝐴 ↦ if(0 ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), 0))
11 simpr 484 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥𝐴)
12 mbfpos.1 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
13 eqid 2731 . . . . . . . . . . 11 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1413fvmpt2 6935 . . . . . . . . . 10 ((𝑥𝐴𝐵 ∈ ℝ) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1511, 12, 14syl2anc 584 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1615breq2d 5098 . . . . . . . 8 ((𝜑𝑥𝐴) → (0 ≤ ((𝑥𝐴𝐵)‘𝑥) ↔ 0 ≤ 𝐵))
1716, 15ifbieq1d 4495 . . . . . . 7 ((𝜑𝑥𝐴) → if(0 ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), 0) = if(0 ≤ 𝐵, 𝐵, 0))
1817mpteq2dva 5179 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), 0)) = (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)))
1910, 18eqtrid 2778 . . . . 5 (𝜑 → (𝑦𝐴 ↦ if(0 ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), 0)) = (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)))
2019adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑦𝐴 ↦ if(0 ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), 0)) = (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)))
2112fmpttd 7043 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
2221adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥𝐴𝐵):𝐴⟶ℝ)
2322ffvelcdmda 7012 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) ∧ 𝑦𝐴) → ((𝑥𝐴𝐵)‘𝑦) ∈ ℝ)
24 nfcv 2894 . . . . . . . . 9 𝑦((𝑥𝐴𝐵)‘𝑥)
253, 24, 7cbvmpt 5188 . . . . . . . 8 (𝑦𝐴 ↦ ((𝑥𝐴𝐵)‘𝑦)) = (𝑥𝐴 ↦ ((𝑥𝐴𝐵)‘𝑥))
2615mpteq2dva 5179 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ ((𝑥𝐴𝐵)‘𝑥)) = (𝑥𝐴𝐵))
2725, 26eqtrid 2778 . . . . . . 7 (𝜑 → (𝑦𝐴 ↦ ((𝑥𝐴𝐵)‘𝑦)) = (𝑥𝐴𝐵))
2827eleq1d 2816 . . . . . 6 (𝜑 → ((𝑦𝐴 ↦ ((𝑥𝐴𝐵)‘𝑦)) ∈ MblFn ↔ (𝑥𝐴𝐵) ∈ MblFn))
2928biimpar 477 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑦𝐴 ↦ ((𝑥𝐴𝐵)‘𝑦)) ∈ MblFn)
3023, 29mbfpos 25574 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑦𝐴 ↦ if(0 ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), 0)) ∈ MblFn)
3120, 30eqeltrrd 2832 . . 3 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
323nfneg 11351 . . . . . . . . 9 𝑥-((𝑥𝐴𝐵)‘𝑦)
331, 2, 32nfbr 5133 . . . . . . . 8 𝑥0 ≤ -((𝑥𝐴𝐵)‘𝑦)
3433, 32, 1nfif 4501 . . . . . . 7 𝑥if(0 ≤ -((𝑥𝐴𝐵)‘𝑦), -((𝑥𝐴𝐵)‘𝑦), 0)
35 nfcv 2894 . . . . . . 7 𝑦if(0 ≤ -((𝑥𝐴𝐵)‘𝑥), -((𝑥𝐴𝐵)‘𝑥), 0)
367negeqd 11349 . . . . . . . . 9 (𝑦 = 𝑥 → -((𝑥𝐴𝐵)‘𝑦) = -((𝑥𝐴𝐵)‘𝑥))
3736breq2d 5098 . . . . . . . 8 (𝑦 = 𝑥 → (0 ≤ -((𝑥𝐴𝐵)‘𝑦) ↔ 0 ≤ -((𝑥𝐴𝐵)‘𝑥)))
3837, 36ifbieq1d 4495 . . . . . . 7 (𝑦 = 𝑥 → if(0 ≤ -((𝑥𝐴𝐵)‘𝑦), -((𝑥𝐴𝐵)‘𝑦), 0) = if(0 ≤ -((𝑥𝐴𝐵)‘𝑥), -((𝑥𝐴𝐵)‘𝑥), 0))
3934, 35, 38cbvmpt 5188 . . . . . 6 (𝑦𝐴 ↦ if(0 ≤ -((𝑥𝐴𝐵)‘𝑦), -((𝑥𝐴𝐵)‘𝑦), 0)) = (𝑥𝐴 ↦ if(0 ≤ -((𝑥𝐴𝐵)‘𝑥), -((𝑥𝐴𝐵)‘𝑥), 0))
4015negeqd 11349 . . . . . . . . 9 ((𝜑𝑥𝐴) → -((𝑥𝐴𝐵)‘𝑥) = -𝐵)
4140breq2d 5098 . . . . . . . 8 ((𝜑𝑥𝐴) → (0 ≤ -((𝑥𝐴𝐵)‘𝑥) ↔ 0 ≤ -𝐵))
4241, 40ifbieq1d 4495 . . . . . . 7 ((𝜑𝑥𝐴) → if(0 ≤ -((𝑥𝐴𝐵)‘𝑥), -((𝑥𝐴𝐵)‘𝑥), 0) = if(0 ≤ -𝐵, -𝐵, 0))
4342mpteq2dva 5179 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -((𝑥𝐴𝐵)‘𝑥), -((𝑥𝐴𝐵)‘𝑥), 0)) = (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)))
4439, 43eqtrid 2778 . . . . 5 (𝜑 → (𝑦𝐴 ↦ if(0 ≤ -((𝑥𝐴𝐵)‘𝑦), -((𝑥𝐴𝐵)‘𝑦), 0)) = (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)))
4544adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑦𝐴 ↦ if(0 ≤ -((𝑥𝐴𝐵)‘𝑦), -((𝑥𝐴𝐵)‘𝑦), 0)) = (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)))
4623renegcld 11539 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) ∧ 𝑦𝐴) → -((𝑥𝐴𝐵)‘𝑦) ∈ ℝ)
4723, 29mbfneg 25573 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑦𝐴 ↦ -((𝑥𝐴𝐵)‘𝑦)) ∈ MblFn)
4846, 47mbfpos 25574 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑦𝐴 ↦ if(0 ≤ -((𝑥𝐴𝐵)‘𝑦), -((𝑥𝐴𝐵)‘𝑦), 0)) ∈ MblFn)
4945, 48eqeltrrd 2832 . . 3 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)
5031, 49jca 511 . 2 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn))
5127adantr 480 . . 3 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑦𝐴 ↦ ((𝑥𝐴𝐵)‘𝑦)) = (𝑥𝐴𝐵))
5221ffvelcdmda 7012 . . . . 5 ((𝜑𝑦𝐴) → ((𝑥𝐴𝐵)‘𝑦) ∈ ℝ)
5352adantlr 715 . . . 4 (((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) ∧ 𝑦𝐴) → ((𝑥𝐴𝐵)‘𝑦) ∈ ℝ)
5419adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑦𝐴 ↦ if(0 ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), 0)) = (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)))
55 simprl 770 . . . . 5 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
5654, 55eqeltrd 2831 . . . 4 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑦𝐴 ↦ if(0 ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), 0)) ∈ MblFn)
5744adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑦𝐴 ↦ if(0 ≤ -((𝑥𝐴𝐵)‘𝑦), -((𝑥𝐴𝐵)‘𝑦), 0)) = (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)))
58 simprr 772 . . . . 5 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)
5957, 58eqeltrd 2831 . . . 4 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑦𝐴 ↦ if(0 ≤ -((𝑥𝐴𝐵)‘𝑦), -((𝑥𝐴𝐵)‘𝑦), 0)) ∈ MblFn)
6053, 56, 59mbfposr 25575 . . 3 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑦𝐴 ↦ ((𝑥𝐴𝐵)‘𝑦)) ∈ MblFn)
6151, 60eqeltrrd 2832 . 2 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑥𝐴𝐵) ∈ MblFn)
6250, 61impbida 800 1 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ↔ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  ifcif 4470   class class class wbr 5086  cmpt 5167  wf 6472  cfv 6476  cr 11000  0cc0 11001  cle 11142  -cneg 11340  MblFncmbf 25537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9789  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-q 12842  df-rp 12886  df-xadd 13007  df-ioo 13244  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-sum 15589  df-xmet 21279  df-met 21280  df-ovol 25387  df-vol 25388  df-mbf 25542
This theorem is referenced by:  iblre  25717
  Copyright terms: Public domain W3C validator