MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfposb Structured version   Visualization version   GIF version

Theorem mbfposb 25571
Description: A function is measurable iff its positive and negative parts are measurable. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypothesis
Ref Expression
mbfpos.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
mbfposb (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ↔ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mbfposb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2891 . . . . . . . . 9 𝑥0
2 nfcv 2891 . . . . . . . . 9 𝑥
3 nffvmpt1 6837 . . . . . . . . 9 𝑥((𝑥𝐴𝐵)‘𝑦)
41, 2, 3nfbr 5142 . . . . . . . 8 𝑥0 ≤ ((𝑥𝐴𝐵)‘𝑦)
54, 3, 1nfif 4509 . . . . . . 7 𝑥if(0 ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), 0)
6 nfcv 2891 . . . . . . 7 𝑦if(0 ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), 0)
7 fveq2 6826 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑥𝐴𝐵)‘𝑦) = ((𝑥𝐴𝐵)‘𝑥))
87breq2d 5107 . . . . . . . 8 (𝑦 = 𝑥 → (0 ≤ ((𝑥𝐴𝐵)‘𝑦) ↔ 0 ≤ ((𝑥𝐴𝐵)‘𝑥)))
98, 7ifbieq1d 4503 . . . . . . 7 (𝑦 = 𝑥 → if(0 ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), 0) = if(0 ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), 0))
105, 6, 9cbvmpt 5197 . . . . . 6 (𝑦𝐴 ↦ if(0 ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), 0)) = (𝑥𝐴 ↦ if(0 ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), 0))
11 simpr 484 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥𝐴)
12 mbfpos.1 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
13 eqid 2729 . . . . . . . . . . 11 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1413fvmpt2 6945 . . . . . . . . . 10 ((𝑥𝐴𝐵 ∈ ℝ) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1511, 12, 14syl2anc 584 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1615breq2d 5107 . . . . . . . 8 ((𝜑𝑥𝐴) → (0 ≤ ((𝑥𝐴𝐵)‘𝑥) ↔ 0 ≤ 𝐵))
1716, 15ifbieq1d 4503 . . . . . . 7 ((𝜑𝑥𝐴) → if(0 ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), 0) = if(0 ≤ 𝐵, 𝐵, 0))
1817mpteq2dva 5188 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), 0)) = (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)))
1910, 18eqtrid 2776 . . . . 5 (𝜑 → (𝑦𝐴 ↦ if(0 ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), 0)) = (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)))
2019adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑦𝐴 ↦ if(0 ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), 0)) = (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)))
2112fmpttd 7053 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
2221adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥𝐴𝐵):𝐴⟶ℝ)
2322ffvelcdmda 7022 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) ∧ 𝑦𝐴) → ((𝑥𝐴𝐵)‘𝑦) ∈ ℝ)
24 nfcv 2891 . . . . . . . . 9 𝑦((𝑥𝐴𝐵)‘𝑥)
253, 24, 7cbvmpt 5197 . . . . . . . 8 (𝑦𝐴 ↦ ((𝑥𝐴𝐵)‘𝑦)) = (𝑥𝐴 ↦ ((𝑥𝐴𝐵)‘𝑥))
2615mpteq2dva 5188 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ ((𝑥𝐴𝐵)‘𝑥)) = (𝑥𝐴𝐵))
2725, 26eqtrid 2776 . . . . . . 7 (𝜑 → (𝑦𝐴 ↦ ((𝑥𝐴𝐵)‘𝑦)) = (𝑥𝐴𝐵))
2827eleq1d 2813 . . . . . 6 (𝜑 → ((𝑦𝐴 ↦ ((𝑥𝐴𝐵)‘𝑦)) ∈ MblFn ↔ (𝑥𝐴𝐵) ∈ MblFn))
2928biimpar 477 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑦𝐴 ↦ ((𝑥𝐴𝐵)‘𝑦)) ∈ MblFn)
3023, 29mbfpos 25569 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑦𝐴 ↦ if(0 ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), 0)) ∈ MblFn)
3120, 30eqeltrrd 2829 . . 3 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
323nfneg 11378 . . . . . . . . 9 𝑥-((𝑥𝐴𝐵)‘𝑦)
331, 2, 32nfbr 5142 . . . . . . . 8 𝑥0 ≤ -((𝑥𝐴𝐵)‘𝑦)
3433, 32, 1nfif 4509 . . . . . . 7 𝑥if(0 ≤ -((𝑥𝐴𝐵)‘𝑦), -((𝑥𝐴𝐵)‘𝑦), 0)
35 nfcv 2891 . . . . . . 7 𝑦if(0 ≤ -((𝑥𝐴𝐵)‘𝑥), -((𝑥𝐴𝐵)‘𝑥), 0)
367negeqd 11376 . . . . . . . . 9 (𝑦 = 𝑥 → -((𝑥𝐴𝐵)‘𝑦) = -((𝑥𝐴𝐵)‘𝑥))
3736breq2d 5107 . . . . . . . 8 (𝑦 = 𝑥 → (0 ≤ -((𝑥𝐴𝐵)‘𝑦) ↔ 0 ≤ -((𝑥𝐴𝐵)‘𝑥)))
3837, 36ifbieq1d 4503 . . . . . . 7 (𝑦 = 𝑥 → if(0 ≤ -((𝑥𝐴𝐵)‘𝑦), -((𝑥𝐴𝐵)‘𝑦), 0) = if(0 ≤ -((𝑥𝐴𝐵)‘𝑥), -((𝑥𝐴𝐵)‘𝑥), 0))
3934, 35, 38cbvmpt 5197 . . . . . 6 (𝑦𝐴 ↦ if(0 ≤ -((𝑥𝐴𝐵)‘𝑦), -((𝑥𝐴𝐵)‘𝑦), 0)) = (𝑥𝐴 ↦ if(0 ≤ -((𝑥𝐴𝐵)‘𝑥), -((𝑥𝐴𝐵)‘𝑥), 0))
4015negeqd 11376 . . . . . . . . 9 ((𝜑𝑥𝐴) → -((𝑥𝐴𝐵)‘𝑥) = -𝐵)
4140breq2d 5107 . . . . . . . 8 ((𝜑𝑥𝐴) → (0 ≤ -((𝑥𝐴𝐵)‘𝑥) ↔ 0 ≤ -𝐵))
4241, 40ifbieq1d 4503 . . . . . . 7 ((𝜑𝑥𝐴) → if(0 ≤ -((𝑥𝐴𝐵)‘𝑥), -((𝑥𝐴𝐵)‘𝑥), 0) = if(0 ≤ -𝐵, -𝐵, 0))
4342mpteq2dva 5188 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -((𝑥𝐴𝐵)‘𝑥), -((𝑥𝐴𝐵)‘𝑥), 0)) = (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)))
4439, 43eqtrid 2776 . . . . 5 (𝜑 → (𝑦𝐴 ↦ if(0 ≤ -((𝑥𝐴𝐵)‘𝑦), -((𝑥𝐴𝐵)‘𝑦), 0)) = (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)))
4544adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑦𝐴 ↦ if(0 ≤ -((𝑥𝐴𝐵)‘𝑦), -((𝑥𝐴𝐵)‘𝑦), 0)) = (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)))
4623renegcld 11566 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) ∧ 𝑦𝐴) → -((𝑥𝐴𝐵)‘𝑦) ∈ ℝ)
4723, 29mbfneg 25568 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑦𝐴 ↦ -((𝑥𝐴𝐵)‘𝑦)) ∈ MblFn)
4846, 47mbfpos 25569 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑦𝐴 ↦ if(0 ≤ -((𝑥𝐴𝐵)‘𝑦), -((𝑥𝐴𝐵)‘𝑦), 0)) ∈ MblFn)
4945, 48eqeltrrd 2829 . . 3 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)
5031, 49jca 511 . 2 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn))
5127adantr 480 . . 3 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑦𝐴 ↦ ((𝑥𝐴𝐵)‘𝑦)) = (𝑥𝐴𝐵))
5221ffvelcdmda 7022 . . . . 5 ((𝜑𝑦𝐴) → ((𝑥𝐴𝐵)‘𝑦) ∈ ℝ)
5352adantlr 715 . . . 4 (((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) ∧ 𝑦𝐴) → ((𝑥𝐴𝐵)‘𝑦) ∈ ℝ)
5419adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑦𝐴 ↦ if(0 ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), 0)) = (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)))
55 simprl 770 . . . . 5 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
5654, 55eqeltrd 2828 . . . 4 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑦𝐴 ↦ if(0 ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), 0)) ∈ MblFn)
5744adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑦𝐴 ↦ if(0 ≤ -((𝑥𝐴𝐵)‘𝑦), -((𝑥𝐴𝐵)‘𝑦), 0)) = (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)))
58 simprr 772 . . . . 5 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)
5957, 58eqeltrd 2828 . . . 4 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑦𝐴 ↦ if(0 ≤ -((𝑥𝐴𝐵)‘𝑦), -((𝑥𝐴𝐵)‘𝑦), 0)) ∈ MblFn)
6053, 56, 59mbfposr 25570 . . 3 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑦𝐴 ↦ ((𝑥𝐴𝐵)‘𝑦)) ∈ MblFn)
6151, 60eqeltrrd 2829 . 2 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑥𝐴𝐵) ∈ MblFn)
6250, 61impbida 800 1 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ↔ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ifcif 4478   class class class wbr 5095  cmpt 5176  wf 6482  cfv 6486  cr 11027  0cc0 11028  cle 11169  -cneg 11367  MblFncmbf 25532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-n0 12404  df-z 12491  df-uz 12755  df-q 12869  df-rp 12913  df-xadd 13034  df-ioo 13271  df-ico 13273  df-icc 13274  df-fz 13430  df-fzo 13577  df-fl 13715  df-seq 13928  df-exp 13988  df-hash 14257  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-clim 15414  df-sum 15613  df-xmet 21273  df-met 21274  df-ovol 25382  df-vol 25383  df-mbf 25537
This theorem is referenced by:  iblre  25712
  Copyright terms: Public domain W3C validator