Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem47 | Structured version Visualization version GIF version |
Description: Subtracting a constant from a real continuous function gives another continuous function. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem47.1 | ⊢ Ⅎ𝑡𝐹 |
stoweidlem47.2 | ⊢ Ⅎ𝑡𝑆 |
stoweidlem47.3 | ⊢ Ⅎ𝑡𝜑 |
stoweidlem47.4 | ⊢ 𝑇 = ∪ 𝐽 |
stoweidlem47.5 | ⊢ 𝐺 = (𝑇 × {-𝑆}) |
stoweidlem47.6 | ⊢ 𝐾 = (topGen‘ran (,)) |
stoweidlem47.7 | ⊢ (𝜑 → 𝐽 ∈ Top) |
stoweidlem47.8 | ⊢ 𝐶 = (𝐽 Cn 𝐾) |
stoweidlem47.9 | ⊢ (𝜑 → 𝐹 ∈ 𝐶) |
stoweidlem47.10 | ⊢ (𝜑 → 𝑆 ∈ ℝ) |
Ref | Expression |
---|---|
stoweidlem47 | ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − 𝑆)) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem47.3 | . . 3 ⊢ Ⅎ𝑡𝜑 | |
2 | stoweidlem47.5 | . . . . . . 7 ⊢ 𝐺 = (𝑇 × {-𝑆}) | |
3 | 2 | fveq1i 6757 | . . . . . 6 ⊢ (𝐺‘𝑡) = ((𝑇 × {-𝑆})‘𝑡) |
4 | stoweidlem47.10 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ ℝ) | |
5 | 4 | renegcld 11332 | . . . . . . 7 ⊢ (𝜑 → -𝑆 ∈ ℝ) |
6 | fvconst2g 7059 | . . . . . . 7 ⊢ ((-𝑆 ∈ ℝ ∧ 𝑡 ∈ 𝑇) → ((𝑇 × {-𝑆})‘𝑡) = -𝑆) | |
7 | 5, 6 | sylan 579 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝑇 × {-𝑆})‘𝑡) = -𝑆) |
8 | 3, 7 | syl5eq 2791 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐺‘𝑡) = -𝑆) |
9 | 8 | oveq2d 7271 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡) + (𝐺‘𝑡)) = ((𝐹‘𝑡) + -𝑆)) |
10 | stoweidlem47.6 | . . . . . . . 8 ⊢ 𝐾 = (topGen‘ran (,)) | |
11 | stoweidlem47.4 | . . . . . . . 8 ⊢ 𝑇 = ∪ 𝐽 | |
12 | stoweidlem47.8 | . . . . . . . 8 ⊢ 𝐶 = (𝐽 Cn 𝐾) | |
13 | stoweidlem47.9 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ 𝐶) | |
14 | 10, 11, 12, 13 | fcnre 42457 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
15 | 14 | ffvelrnda 6943 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℝ) |
16 | 15 | recnd 10934 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℂ) |
17 | 4 | recnd 10934 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ℂ) |
18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑆 ∈ ℂ) |
19 | 16, 18 | negsubd 11268 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡) + -𝑆) = ((𝐹‘𝑡) − 𝑆)) |
20 | 9, 19 | eqtrd 2778 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡) + (𝐺‘𝑡)) = ((𝐹‘𝑡) − 𝑆)) |
21 | 1, 20 | mpteq2da 5168 | . 2 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − 𝑆))) |
22 | stoweidlem47.1 | . . . 4 ⊢ Ⅎ𝑡𝐹 | |
23 | nfcv 2906 | . . . . . 6 ⊢ Ⅎ𝑡𝑇 | |
24 | stoweidlem47.2 | . . . . . . . 8 ⊢ Ⅎ𝑡𝑆 | |
25 | 24 | nfneg 11147 | . . . . . . 7 ⊢ Ⅎ𝑡-𝑆 |
26 | 25 | nfsn 4640 | . . . . . 6 ⊢ Ⅎ𝑡{-𝑆} |
27 | 23, 26 | nfxp 5613 | . . . . 5 ⊢ Ⅎ𝑡(𝑇 × {-𝑆}) |
28 | 2, 27 | nfcxfr 2904 | . . . 4 ⊢ Ⅎ𝑡𝐺 |
29 | stoweidlem47.7 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Top) | |
30 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑇 = ∪ 𝐽) |
31 | istopon 21969 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑇) ↔ (𝐽 ∈ Top ∧ 𝑇 = ∪ 𝐽)) | |
32 | 29, 30, 31 | sylanbrc 582 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑇)) |
33 | 13, 12 | eleqtrdi 2849 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
34 | retopon 23833 | . . . . . . . 8 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
35 | 10, 34 | eqeltri 2835 | . . . . . . 7 ⊢ 𝐾 ∈ (TopOn‘ℝ) |
36 | 35 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘ℝ)) |
37 | cnconst2 22342 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑇) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ -𝑆 ∈ ℝ) → (𝑇 × {-𝑆}) ∈ (𝐽 Cn 𝐾)) | |
38 | 32, 36, 5, 37 | syl3anc 1369 | . . . . 5 ⊢ (𝜑 → (𝑇 × {-𝑆}) ∈ (𝐽 Cn 𝐾)) |
39 | 2, 38 | eqeltrid 2843 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
40 | 22, 28, 1, 10, 32, 33, 39 | refsum2cn 42470 | . . 3 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) ∈ (𝐽 Cn 𝐾)) |
41 | 40, 12 | eleqtrrdi 2850 | . 2 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) ∈ 𝐶) |
42 | 21, 41 | eqeltrrd 2840 | 1 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − 𝑆)) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 {csn 4558 ∪ cuni 4836 ↦ cmpt 5153 × cxp 5578 ran crn 5581 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 + caddc 10805 − cmin 11135 -cneg 11136 (,)cioo 13008 topGenctg 17065 Topctop 21950 TopOnctopon 21967 Cn ccn 22283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cn 22286 df-cnp 22287 df-tx 22621 df-hmeo 22814 df-xms 23381 df-ms 23382 df-tms 23383 |
This theorem is referenced by: stoweidlem62 43493 |
Copyright terms: Public domain | W3C validator |