![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem47 | Structured version Visualization version GIF version |
Description: Subtracting a constant from a real continuous function gives another continuous function. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem47.1 | β’ β²π‘πΉ |
stoweidlem47.2 | β’ β²π‘π |
stoweidlem47.3 | β’ β²π‘π |
stoweidlem47.4 | β’ π = βͺ π½ |
stoweidlem47.5 | β’ πΊ = (π Γ {-π}) |
stoweidlem47.6 | β’ πΎ = (topGenβran (,)) |
stoweidlem47.7 | β’ (π β π½ β Top) |
stoweidlem47.8 | β’ πΆ = (π½ Cn πΎ) |
stoweidlem47.9 | β’ (π β πΉ β πΆ) |
stoweidlem47.10 | β’ (π β π β β) |
Ref | Expression |
---|---|
stoweidlem47 | β’ (π β (π‘ β π β¦ ((πΉβπ‘) β π)) β πΆ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem47.3 | . . 3 β’ β²π‘π | |
2 | stoweidlem47.5 | . . . . . . 7 β’ πΊ = (π Γ {-π}) | |
3 | 2 | fveq1i 6892 | . . . . . 6 β’ (πΊβπ‘) = ((π Γ {-π})βπ‘) |
4 | stoweidlem47.10 | . . . . . . . 8 β’ (π β π β β) | |
5 | 4 | renegcld 11640 | . . . . . . 7 β’ (π β -π β β) |
6 | fvconst2g 7202 | . . . . . . 7 β’ ((-π β β β§ π‘ β π) β ((π Γ {-π})βπ‘) = -π) | |
7 | 5, 6 | sylan 580 | . . . . . 6 β’ ((π β§ π‘ β π) β ((π Γ {-π})βπ‘) = -π) |
8 | 3, 7 | eqtrid 2784 | . . . . 5 β’ ((π β§ π‘ β π) β (πΊβπ‘) = -π) |
9 | 8 | oveq2d 7424 | . . . 4 β’ ((π β§ π‘ β π) β ((πΉβπ‘) + (πΊβπ‘)) = ((πΉβπ‘) + -π)) |
10 | stoweidlem47.6 | . . . . . . . 8 β’ πΎ = (topGenβran (,)) | |
11 | stoweidlem47.4 | . . . . . . . 8 β’ π = βͺ π½ | |
12 | stoweidlem47.8 | . . . . . . . 8 β’ πΆ = (π½ Cn πΎ) | |
13 | stoweidlem47.9 | . . . . . . . 8 β’ (π β πΉ β πΆ) | |
14 | 10, 11, 12, 13 | fcnre 43699 | . . . . . . 7 β’ (π β πΉ:πβΆβ) |
15 | 14 | ffvelcdmda 7086 | . . . . . 6 β’ ((π β§ π‘ β π) β (πΉβπ‘) β β) |
16 | 15 | recnd 11241 | . . . . 5 β’ ((π β§ π‘ β π) β (πΉβπ‘) β β) |
17 | 4 | recnd 11241 | . . . . . 6 β’ (π β π β β) |
18 | 17 | adantr 481 | . . . . 5 β’ ((π β§ π‘ β π) β π β β) |
19 | 16, 18 | negsubd 11576 | . . . 4 β’ ((π β§ π‘ β π) β ((πΉβπ‘) + -π) = ((πΉβπ‘) β π)) |
20 | 9, 19 | eqtrd 2772 | . . 3 β’ ((π β§ π‘ β π) β ((πΉβπ‘) + (πΊβπ‘)) = ((πΉβπ‘) β π)) |
21 | 1, 20 | mpteq2da 5246 | . 2 β’ (π β (π‘ β π β¦ ((πΉβπ‘) + (πΊβπ‘))) = (π‘ β π β¦ ((πΉβπ‘) β π))) |
22 | stoweidlem47.1 | . . . 4 β’ β²π‘πΉ | |
23 | nfcv 2903 | . . . . . 6 β’ β²π‘π | |
24 | stoweidlem47.2 | . . . . . . . 8 β’ β²π‘π | |
25 | 24 | nfneg 11455 | . . . . . . 7 β’ β²π‘-π |
26 | 25 | nfsn 4711 | . . . . . 6 β’ β²π‘{-π} |
27 | 23, 26 | nfxp 5709 | . . . . 5 β’ β²π‘(π Γ {-π}) |
28 | 2, 27 | nfcxfr 2901 | . . . 4 β’ β²π‘πΊ |
29 | stoweidlem47.7 | . . . . 5 β’ (π β π½ β Top) | |
30 | 11 | a1i 11 | . . . . 5 β’ (π β π = βͺ π½) |
31 | istopon 22413 | . . . . 5 β’ (π½ β (TopOnβπ) β (π½ β Top β§ π = βͺ π½)) | |
32 | 29, 30, 31 | sylanbrc 583 | . . . 4 β’ (π β π½ β (TopOnβπ)) |
33 | 13, 12 | eleqtrdi 2843 | . . . 4 β’ (π β πΉ β (π½ Cn πΎ)) |
34 | retopon 24279 | . . . . . . . 8 β’ (topGenβran (,)) β (TopOnββ) | |
35 | 10, 34 | eqeltri 2829 | . . . . . . 7 β’ πΎ β (TopOnββ) |
36 | 35 | a1i 11 | . . . . . 6 β’ (π β πΎ β (TopOnββ)) |
37 | cnconst2 22786 | . . . . . 6 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnββ) β§ -π β β) β (π Γ {-π}) β (π½ Cn πΎ)) | |
38 | 32, 36, 5, 37 | syl3anc 1371 | . . . . 5 β’ (π β (π Γ {-π}) β (π½ Cn πΎ)) |
39 | 2, 38 | eqeltrid 2837 | . . . 4 β’ (π β πΊ β (π½ Cn πΎ)) |
40 | 22, 28, 1, 10, 32, 33, 39 | refsum2cn 43712 | . . 3 β’ (π β (π‘ β π β¦ ((πΉβπ‘) + (πΊβπ‘))) β (π½ Cn πΎ)) |
41 | 40, 12 | eleqtrrdi 2844 | . 2 β’ (π β (π‘ β π β¦ ((πΉβπ‘) + (πΊβπ‘))) β πΆ) |
42 | 21, 41 | eqeltrrd 2834 | 1 β’ (π β (π‘ β π β¦ ((πΉβπ‘) β π)) β πΆ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β²wnf 1785 β wcel 2106 β²wnfc 2883 {csn 4628 βͺ cuni 4908 β¦ cmpt 5231 Γ cxp 5674 ran crn 5677 βcfv 6543 (class class class)co 7408 βcc 11107 βcr 11108 + caddc 11112 β cmin 11443 -cneg 11444 (,)cioo 13323 topGenctg 17382 Topctop 22394 TopOnctopon 22411 Cn ccn 22727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-er 8702 df-map 8821 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-q 12932 df-rp 12974 df-xneg 13091 df-xadd 13092 df-xmul 13093 df-ioo 13327 df-icc 13330 df-fz 13484 df-fzo 13627 df-seq 13966 df-exp 14027 df-hash 14290 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-clim 15431 df-sum 15632 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17367 df-topn 17368 df-0g 17386 df-gsum 17387 df-topgen 17388 df-pt 17389 df-prds 17392 df-xrs 17447 df-qtop 17452 df-imas 17453 df-xps 17455 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-submnd 18671 df-mulg 18950 df-cntz 19180 df-cmn 19649 df-psmet 20935 df-xmet 20936 df-met 20937 df-bl 20938 df-mopn 20939 df-cnfld 20944 df-top 22395 df-topon 22412 df-topsp 22434 df-bases 22448 df-cn 22730 df-cnp 22731 df-tx 23065 df-hmeo 23258 df-xms 23825 df-ms 23826 df-tms 23827 |
This theorem is referenced by: stoweidlem62 44768 |
Copyright terms: Public domain | W3C validator |