Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem47 Structured version   Visualization version   GIF version

Theorem stoweidlem47 43588
Description: Subtracting a constant from a real continuous function gives another continuous function. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem47.1 𝑡𝐹
stoweidlem47.2 𝑡𝑆
stoweidlem47.3 𝑡𝜑
stoweidlem47.4 𝑇 = 𝐽
stoweidlem47.5 𝐺 = (𝑇 × {-𝑆})
stoweidlem47.6 𝐾 = (topGen‘ran (,))
stoweidlem47.7 (𝜑𝐽 ∈ Top)
stoweidlem47.8 𝐶 = (𝐽 Cn 𝐾)
stoweidlem47.9 (𝜑𝐹𝐶)
stoweidlem47.10 (𝜑𝑆 ∈ ℝ)
Assertion
Ref Expression
stoweidlem47 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) − 𝑆)) ∈ 𝐶)
Distinct variable groups:   𝑡,𝐽   𝑡,𝐾   𝑡,𝑇
Allowed substitution hints:   𝜑(𝑡)   𝐶(𝑡)   𝑆(𝑡)   𝐹(𝑡)   𝐺(𝑡)

Proof of Theorem stoweidlem47
StepHypRef Expression
1 stoweidlem47.3 . . 3 𝑡𝜑
2 stoweidlem47.5 . . . . . . 7 𝐺 = (𝑇 × {-𝑆})
32fveq1i 6775 . . . . . 6 (𝐺𝑡) = ((𝑇 × {-𝑆})‘𝑡)
4 stoweidlem47.10 . . . . . . . 8 (𝜑𝑆 ∈ ℝ)
54renegcld 11402 . . . . . . 7 (𝜑 → -𝑆 ∈ ℝ)
6 fvconst2g 7077 . . . . . . 7 ((-𝑆 ∈ ℝ ∧ 𝑡𝑇) → ((𝑇 × {-𝑆})‘𝑡) = -𝑆)
75, 6sylan 580 . . . . . 6 ((𝜑𝑡𝑇) → ((𝑇 × {-𝑆})‘𝑡) = -𝑆)
83, 7eqtrid 2790 . . . . 5 ((𝜑𝑡𝑇) → (𝐺𝑡) = -𝑆)
98oveq2d 7291 . . . 4 ((𝜑𝑡𝑇) → ((𝐹𝑡) + (𝐺𝑡)) = ((𝐹𝑡) + -𝑆))
10 stoweidlem47.6 . . . . . . . 8 𝐾 = (topGen‘ran (,))
11 stoweidlem47.4 . . . . . . . 8 𝑇 = 𝐽
12 stoweidlem47.8 . . . . . . . 8 𝐶 = (𝐽 Cn 𝐾)
13 stoweidlem47.9 . . . . . . . 8 (𝜑𝐹𝐶)
1410, 11, 12, 13fcnre 42568 . . . . . . 7 (𝜑𝐹:𝑇⟶ℝ)
1514ffvelrnda 6961 . . . . . 6 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
1615recnd 11003 . . . . 5 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
174recnd 11003 . . . . . 6 (𝜑𝑆 ∈ ℂ)
1817adantr 481 . . . . 5 ((𝜑𝑡𝑇) → 𝑆 ∈ ℂ)
1916, 18negsubd 11338 . . . 4 ((𝜑𝑡𝑇) → ((𝐹𝑡) + -𝑆) = ((𝐹𝑡) − 𝑆))
209, 19eqtrd 2778 . . 3 ((𝜑𝑡𝑇) → ((𝐹𝑡) + (𝐺𝑡)) = ((𝐹𝑡) − 𝑆))
211, 20mpteq2da 5172 . 2 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐺𝑡))) = (𝑡𝑇 ↦ ((𝐹𝑡) − 𝑆)))
22 stoweidlem47.1 . . . 4 𝑡𝐹
23 nfcv 2907 . . . . . 6 𝑡𝑇
24 stoweidlem47.2 . . . . . . . 8 𝑡𝑆
2524nfneg 11217 . . . . . . 7 𝑡-𝑆
2625nfsn 4643 . . . . . 6 𝑡{-𝑆}
2723, 26nfxp 5622 . . . . 5 𝑡(𝑇 × {-𝑆})
282, 27nfcxfr 2905 . . . 4 𝑡𝐺
29 stoweidlem47.7 . . . . 5 (𝜑𝐽 ∈ Top)
3011a1i 11 . . . . 5 (𝜑𝑇 = 𝐽)
31 istopon 22061 . . . . 5 (𝐽 ∈ (TopOn‘𝑇) ↔ (𝐽 ∈ Top ∧ 𝑇 = 𝐽))
3229, 30, 31sylanbrc 583 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑇))
3313, 12eleqtrdi 2849 . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
34 retopon 23927 . . . . . . . 8 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
3510, 34eqeltri 2835 . . . . . . 7 𝐾 ∈ (TopOn‘ℝ)
3635a1i 11 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ℝ))
37 cnconst2 22434 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑇) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ -𝑆 ∈ ℝ) → (𝑇 × {-𝑆}) ∈ (𝐽 Cn 𝐾))
3832, 36, 5, 37syl3anc 1370 . . . . 5 (𝜑 → (𝑇 × {-𝑆}) ∈ (𝐽 Cn 𝐾))
392, 38eqeltrid 2843 . . . 4 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
4022, 28, 1, 10, 32, 33, 39refsum2cn 42581 . . 3 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐺𝑡))) ∈ (𝐽 Cn 𝐾))
4140, 12eleqtrrdi 2850 . 2 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐺𝑡))) ∈ 𝐶)
4221, 41eqeltrrd 2840 1 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) − 𝑆)) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wnf 1786  wcel 2106  wnfc 2887  {csn 4561   cuni 4839  cmpt 5157   × cxp 5587  ran crn 5590  cfv 6433  (class class class)co 7275  cc 10869  cr 10870   + caddc 10874  cmin 11205  -cneg 11206  (,)cioo 13079  topGenctg 17148  Topctop 22042  TopOnctopon 22059   Cn ccn 22375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cn 22378  df-cnp 22379  df-tx 22713  df-hmeo 22906  df-xms 23473  df-ms 23474  df-tms 23475
This theorem is referenced by:  stoweidlem62  43603
  Copyright terms: Public domain W3C validator