| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem47 | Structured version Visualization version GIF version | ||
| Description: Subtracting a constant from a real continuous function gives another continuous function. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| stoweidlem47.1 | ⊢ Ⅎ𝑡𝐹 |
| stoweidlem47.2 | ⊢ Ⅎ𝑡𝑆 |
| stoweidlem47.3 | ⊢ Ⅎ𝑡𝜑 |
| stoweidlem47.4 | ⊢ 𝑇 = ∪ 𝐽 |
| stoweidlem47.5 | ⊢ 𝐺 = (𝑇 × {-𝑆}) |
| stoweidlem47.6 | ⊢ 𝐾 = (topGen‘ran (,)) |
| stoweidlem47.7 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| stoweidlem47.8 | ⊢ 𝐶 = (𝐽 Cn 𝐾) |
| stoweidlem47.9 | ⊢ (𝜑 → 𝐹 ∈ 𝐶) |
| stoweidlem47.10 | ⊢ (𝜑 → 𝑆 ∈ ℝ) |
| Ref | Expression |
|---|---|
| stoweidlem47 | ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − 𝑆)) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stoweidlem47.3 | . . 3 ⊢ Ⅎ𝑡𝜑 | |
| 2 | stoweidlem47.5 | . . . . . . 7 ⊢ 𝐺 = (𝑇 × {-𝑆}) | |
| 3 | 2 | fveq1i 6907 | . . . . . 6 ⊢ (𝐺‘𝑡) = ((𝑇 × {-𝑆})‘𝑡) |
| 4 | stoweidlem47.10 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ ℝ) | |
| 5 | 4 | renegcld 11690 | . . . . . . 7 ⊢ (𝜑 → -𝑆 ∈ ℝ) |
| 6 | fvconst2g 7222 | . . . . . . 7 ⊢ ((-𝑆 ∈ ℝ ∧ 𝑡 ∈ 𝑇) → ((𝑇 × {-𝑆})‘𝑡) = -𝑆) | |
| 7 | 5, 6 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝑇 × {-𝑆})‘𝑡) = -𝑆) |
| 8 | 3, 7 | eqtrid 2789 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐺‘𝑡) = -𝑆) |
| 9 | 8 | oveq2d 7447 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡) + (𝐺‘𝑡)) = ((𝐹‘𝑡) + -𝑆)) |
| 10 | stoweidlem47.6 | . . . . . . . 8 ⊢ 𝐾 = (topGen‘ran (,)) | |
| 11 | stoweidlem47.4 | . . . . . . . 8 ⊢ 𝑇 = ∪ 𝐽 | |
| 12 | stoweidlem47.8 | . . . . . . . 8 ⊢ 𝐶 = (𝐽 Cn 𝐾) | |
| 13 | stoweidlem47.9 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ 𝐶) | |
| 14 | 10, 11, 12, 13 | fcnre 45030 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
| 15 | 14 | ffvelcdmda 7104 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℝ) |
| 16 | 15 | recnd 11289 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℂ) |
| 17 | 4 | recnd 11289 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ℂ) |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑆 ∈ ℂ) |
| 19 | 16, 18 | negsubd 11626 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡) + -𝑆) = ((𝐹‘𝑡) − 𝑆)) |
| 20 | 9, 19 | eqtrd 2777 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡) + (𝐺‘𝑡)) = ((𝐹‘𝑡) − 𝑆)) |
| 21 | 1, 20 | mpteq2da 5240 | . 2 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − 𝑆))) |
| 22 | stoweidlem47.1 | . . . 4 ⊢ Ⅎ𝑡𝐹 | |
| 23 | nfcv 2905 | . . . . . 6 ⊢ Ⅎ𝑡𝑇 | |
| 24 | stoweidlem47.2 | . . . . . . . 8 ⊢ Ⅎ𝑡𝑆 | |
| 25 | 24 | nfneg 11504 | . . . . . . 7 ⊢ Ⅎ𝑡-𝑆 |
| 26 | 25 | nfsn 4707 | . . . . . 6 ⊢ Ⅎ𝑡{-𝑆} |
| 27 | 23, 26 | nfxp 5718 | . . . . 5 ⊢ Ⅎ𝑡(𝑇 × {-𝑆}) |
| 28 | 2, 27 | nfcxfr 2903 | . . . 4 ⊢ Ⅎ𝑡𝐺 |
| 29 | stoweidlem47.7 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 30 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑇 = ∪ 𝐽) |
| 31 | istopon 22918 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑇) ↔ (𝐽 ∈ Top ∧ 𝑇 = ∪ 𝐽)) | |
| 32 | 29, 30, 31 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑇)) |
| 33 | 13, 12 | eleqtrdi 2851 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| 34 | retopon 24784 | . . . . . . . 8 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
| 35 | 10, 34 | eqeltri 2837 | . . . . . . 7 ⊢ 𝐾 ∈ (TopOn‘ℝ) |
| 36 | 35 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘ℝ)) |
| 37 | cnconst2 23291 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑇) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ -𝑆 ∈ ℝ) → (𝑇 × {-𝑆}) ∈ (𝐽 Cn 𝐾)) | |
| 38 | 32, 36, 5, 37 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑇 × {-𝑆}) ∈ (𝐽 Cn 𝐾)) |
| 39 | 2, 38 | eqeltrid 2845 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
| 40 | 22, 28, 1, 10, 32, 33, 39 | refsum2cn 45043 | . . 3 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) ∈ (𝐽 Cn 𝐾)) |
| 41 | 40, 12 | eleqtrrdi 2852 | . 2 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) ∈ 𝐶) |
| 42 | 21, 41 | eqeltrrd 2842 | 1 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − 𝑆)) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 Ⅎwnfc 2890 {csn 4626 ∪ cuni 4907 ↦ cmpt 5225 × cxp 5683 ran crn 5686 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 ℝcr 11154 + caddc 11158 − cmin 11492 -cneg 11493 (,)cioo 13387 topGenctg 17482 Topctop 22899 TopOnctopon 22916 Cn ccn 23232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-fi 9451 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-ioo 13391 df-icc 13394 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-sum 15723 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17467 df-topn 17468 df-0g 17486 df-gsum 17487 df-topgen 17488 df-pt 17489 df-prds 17492 df-xrs 17547 df-qtop 17552 df-imas 17553 df-xps 17555 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-mulg 19086 df-cntz 19335 df-cmn 19800 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-cnfld 21365 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cn 23235 df-cnp 23236 df-tx 23570 df-hmeo 23763 df-xms 24330 df-ms 24331 df-tms 24332 |
| This theorem is referenced by: stoweidlem62 46077 |
| Copyright terms: Public domain | W3C validator |