Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem47 Structured version   Visualization version   GIF version

Theorem stoweidlem47 46155
Description: Subtracting a constant from a real continuous function gives another continuous function. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem47.1 𝑡𝐹
stoweidlem47.2 𝑡𝑆
stoweidlem47.3 𝑡𝜑
stoweidlem47.4 𝑇 = 𝐽
stoweidlem47.5 𝐺 = (𝑇 × {-𝑆})
stoweidlem47.6 𝐾 = (topGen‘ran (,))
stoweidlem47.7 (𝜑𝐽 ∈ Top)
stoweidlem47.8 𝐶 = (𝐽 Cn 𝐾)
stoweidlem47.9 (𝜑𝐹𝐶)
stoweidlem47.10 (𝜑𝑆 ∈ ℝ)
Assertion
Ref Expression
stoweidlem47 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) − 𝑆)) ∈ 𝐶)
Distinct variable groups:   𝑡,𝐽   𝑡,𝐾   𝑡,𝑇
Allowed substitution hints:   𝜑(𝑡)   𝐶(𝑡)   𝑆(𝑡)   𝐹(𝑡)   𝐺(𝑡)

Proof of Theorem stoweidlem47
StepHypRef Expression
1 stoweidlem47.3 . . 3 𝑡𝜑
2 stoweidlem47.5 . . . . . . 7 𝐺 = (𝑇 × {-𝑆})
32fveq1i 6823 . . . . . 6 (𝐺𝑡) = ((𝑇 × {-𝑆})‘𝑡)
4 stoweidlem47.10 . . . . . . . 8 (𝜑𝑆 ∈ ℝ)
54renegcld 11544 . . . . . . 7 (𝜑 → -𝑆 ∈ ℝ)
6 fvconst2g 7136 . . . . . . 7 ((-𝑆 ∈ ℝ ∧ 𝑡𝑇) → ((𝑇 × {-𝑆})‘𝑡) = -𝑆)
75, 6sylan 580 . . . . . 6 ((𝜑𝑡𝑇) → ((𝑇 × {-𝑆})‘𝑡) = -𝑆)
83, 7eqtrid 2778 . . . . 5 ((𝜑𝑡𝑇) → (𝐺𝑡) = -𝑆)
98oveq2d 7362 . . . 4 ((𝜑𝑡𝑇) → ((𝐹𝑡) + (𝐺𝑡)) = ((𝐹𝑡) + -𝑆))
10 stoweidlem47.6 . . . . . . . 8 𝐾 = (topGen‘ran (,))
11 stoweidlem47.4 . . . . . . . 8 𝑇 = 𝐽
12 stoweidlem47.8 . . . . . . . 8 𝐶 = (𝐽 Cn 𝐾)
13 stoweidlem47.9 . . . . . . . 8 (𝜑𝐹𝐶)
1410, 11, 12, 13fcnre 45132 . . . . . . 7 (𝜑𝐹:𝑇⟶ℝ)
1514ffvelcdmda 7017 . . . . . 6 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
1615recnd 11140 . . . . 5 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
174recnd 11140 . . . . . 6 (𝜑𝑆 ∈ ℂ)
1817adantr 480 . . . . 5 ((𝜑𝑡𝑇) → 𝑆 ∈ ℂ)
1916, 18negsubd 11478 . . . 4 ((𝜑𝑡𝑇) → ((𝐹𝑡) + -𝑆) = ((𝐹𝑡) − 𝑆))
209, 19eqtrd 2766 . . 3 ((𝜑𝑡𝑇) → ((𝐹𝑡) + (𝐺𝑡)) = ((𝐹𝑡) − 𝑆))
211, 20mpteq2da 5181 . 2 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐺𝑡))) = (𝑡𝑇 ↦ ((𝐹𝑡) − 𝑆)))
22 stoweidlem47.1 . . . 4 𝑡𝐹
23 nfcv 2894 . . . . . 6 𝑡𝑇
24 stoweidlem47.2 . . . . . . . 8 𝑡𝑆
2524nfneg 11356 . . . . . . 7 𝑡-𝑆
2625nfsn 4657 . . . . . 6 𝑡{-𝑆}
2723, 26nfxp 5647 . . . . 5 𝑡(𝑇 × {-𝑆})
282, 27nfcxfr 2892 . . . 4 𝑡𝐺
29 stoweidlem47.7 . . . . 5 (𝜑𝐽 ∈ Top)
3011a1i 11 . . . . 5 (𝜑𝑇 = 𝐽)
31 istopon 22827 . . . . 5 (𝐽 ∈ (TopOn‘𝑇) ↔ (𝐽 ∈ Top ∧ 𝑇 = 𝐽))
3229, 30, 31sylanbrc 583 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑇))
3313, 12eleqtrdi 2841 . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
34 retopon 24678 . . . . . . . 8 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
3510, 34eqeltri 2827 . . . . . . 7 𝐾 ∈ (TopOn‘ℝ)
3635a1i 11 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ℝ))
37 cnconst2 23198 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑇) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ -𝑆 ∈ ℝ) → (𝑇 × {-𝑆}) ∈ (𝐽 Cn 𝐾))
3832, 36, 5, 37syl3anc 1373 . . . . 5 (𝜑 → (𝑇 × {-𝑆}) ∈ (𝐽 Cn 𝐾))
392, 38eqeltrid 2835 . . . 4 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
4022, 28, 1, 10, 32, 33, 39refsum2cn 45145 . . 3 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐺𝑡))) ∈ (𝐽 Cn 𝐾))
4140, 12eleqtrrdi 2842 . 2 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐺𝑡))) ∈ 𝐶)
4221, 41eqeltrrd 2832 1 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) − 𝑆)) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111  wnfc 2879  {csn 4573   cuni 4856  cmpt 5170   × cxp 5612  ran crn 5615  cfv 6481  (class class class)co 7346  cc 11004  cr 11005   + caddc 11009  cmin 11344  -cneg 11345  (,)cioo 13245  topGenctg 17341  Topctop 22808  TopOnctopon 22825   Cn ccn 23139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cn 23142  df-cnp 23143  df-tx 23477  df-hmeo 23670  df-xms 24235  df-ms 24236  df-tms 24237
This theorem is referenced by:  stoweidlem62  46170
  Copyright terms: Public domain W3C validator