![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem47 | Structured version Visualization version GIF version |
Description: Subtracting a constant from a real continuous function gives another continuous function. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem47.1 | ⊢ Ⅎ𝑡𝐹 |
stoweidlem47.2 | ⊢ Ⅎ𝑡𝑆 |
stoweidlem47.3 | ⊢ Ⅎ𝑡𝜑 |
stoweidlem47.4 | ⊢ 𝑇 = ∪ 𝐽 |
stoweidlem47.5 | ⊢ 𝐺 = (𝑇 × {-𝑆}) |
stoweidlem47.6 | ⊢ 𝐾 = (topGen‘ran (,)) |
stoweidlem47.7 | ⊢ (𝜑 → 𝐽 ∈ Top) |
stoweidlem47.8 | ⊢ 𝐶 = (𝐽 Cn 𝐾) |
stoweidlem47.9 | ⊢ (𝜑 → 𝐹 ∈ 𝐶) |
stoweidlem47.10 | ⊢ (𝜑 → 𝑆 ∈ ℝ) |
Ref | Expression |
---|---|
stoweidlem47 | ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − 𝑆)) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem47.3 | . . 3 ⊢ Ⅎ𝑡𝜑 | |
2 | stoweidlem47.5 | . . . . . . 7 ⊢ 𝐺 = (𝑇 × {-𝑆}) | |
3 | 2 | fveq1i 6892 | . . . . . 6 ⊢ (𝐺‘𝑡) = ((𝑇 × {-𝑆})‘𝑡) |
4 | stoweidlem47.10 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ ℝ) | |
5 | 4 | renegcld 11648 | . . . . . . 7 ⊢ (𝜑 → -𝑆 ∈ ℝ) |
6 | fvconst2g 7205 | . . . . . . 7 ⊢ ((-𝑆 ∈ ℝ ∧ 𝑡 ∈ 𝑇) → ((𝑇 × {-𝑆})‘𝑡) = -𝑆) | |
7 | 5, 6 | sylan 579 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝑇 × {-𝑆})‘𝑡) = -𝑆) |
8 | 3, 7 | eqtrid 2783 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐺‘𝑡) = -𝑆) |
9 | 8 | oveq2d 7428 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡) + (𝐺‘𝑡)) = ((𝐹‘𝑡) + -𝑆)) |
10 | stoweidlem47.6 | . . . . . . . 8 ⊢ 𝐾 = (topGen‘ran (,)) | |
11 | stoweidlem47.4 | . . . . . . . 8 ⊢ 𝑇 = ∪ 𝐽 | |
12 | stoweidlem47.8 | . . . . . . . 8 ⊢ 𝐶 = (𝐽 Cn 𝐾) | |
13 | stoweidlem47.9 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ 𝐶) | |
14 | 10, 11, 12, 13 | fcnre 44172 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
15 | 14 | ffvelcdmda 7086 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℝ) |
16 | 15 | recnd 11249 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℂ) |
17 | 4 | recnd 11249 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ℂ) |
18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑆 ∈ ℂ) |
19 | 16, 18 | negsubd 11584 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡) + -𝑆) = ((𝐹‘𝑡) − 𝑆)) |
20 | 9, 19 | eqtrd 2771 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡) + (𝐺‘𝑡)) = ((𝐹‘𝑡) − 𝑆)) |
21 | 1, 20 | mpteq2da 5246 | . 2 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − 𝑆))) |
22 | stoweidlem47.1 | . . . 4 ⊢ Ⅎ𝑡𝐹 | |
23 | nfcv 2902 | . . . . . 6 ⊢ Ⅎ𝑡𝑇 | |
24 | stoweidlem47.2 | . . . . . . . 8 ⊢ Ⅎ𝑡𝑆 | |
25 | 24 | nfneg 11463 | . . . . . . 7 ⊢ Ⅎ𝑡-𝑆 |
26 | 25 | nfsn 4711 | . . . . . 6 ⊢ Ⅎ𝑡{-𝑆} |
27 | 23, 26 | nfxp 5709 | . . . . 5 ⊢ Ⅎ𝑡(𝑇 × {-𝑆}) |
28 | 2, 27 | nfcxfr 2900 | . . . 4 ⊢ Ⅎ𝑡𝐺 |
29 | stoweidlem47.7 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Top) | |
30 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑇 = ∪ 𝐽) |
31 | istopon 22734 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑇) ↔ (𝐽 ∈ Top ∧ 𝑇 = ∪ 𝐽)) | |
32 | 29, 30, 31 | sylanbrc 582 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑇)) |
33 | 13, 12 | eleqtrdi 2842 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
34 | retopon 24600 | . . . . . . . 8 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
35 | 10, 34 | eqeltri 2828 | . . . . . . 7 ⊢ 𝐾 ∈ (TopOn‘ℝ) |
36 | 35 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘ℝ)) |
37 | cnconst2 23107 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑇) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ -𝑆 ∈ ℝ) → (𝑇 × {-𝑆}) ∈ (𝐽 Cn 𝐾)) | |
38 | 32, 36, 5, 37 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝑇 × {-𝑆}) ∈ (𝐽 Cn 𝐾)) |
39 | 2, 38 | eqeltrid 2836 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
40 | 22, 28, 1, 10, 32, 33, 39 | refsum2cn 44185 | . . 3 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) ∈ (𝐽 Cn 𝐾)) |
41 | 40, 12 | eleqtrrdi 2843 | . 2 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) ∈ 𝐶) |
42 | 21, 41 | eqeltrrd 2833 | 1 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − 𝑆)) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 Ⅎwnfc 2882 {csn 4628 ∪ cuni 4908 ↦ cmpt 5231 × cxp 5674 ran crn 5677 ‘cfv 6543 (class class class)co 7412 ℂcc 11114 ℝcr 11115 + caddc 11119 − cmin 11451 -cneg 11452 (,)cioo 13331 topGenctg 17390 Topctop 22715 TopOnctopon 22732 Cn ccn 23048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-er 8709 df-map 8828 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-fi 9412 df-sup 9443 df-inf 9444 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-q 12940 df-rp 12982 df-xneg 13099 df-xadd 13100 df-xmul 13101 df-ioo 13335 df-icc 13338 df-fz 13492 df-fzo 13635 df-seq 13974 df-exp 14035 df-hash 14298 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-clim 15439 df-sum 15640 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-rest 17375 df-topn 17376 df-0g 17394 df-gsum 17395 df-topgen 17396 df-pt 17397 df-prds 17400 df-xrs 17455 df-qtop 17460 df-imas 17461 df-xps 17463 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-mulg 18994 df-cntz 19229 df-cmn 19698 df-psmet 21225 df-xmet 21226 df-met 21227 df-bl 21228 df-mopn 21229 df-cnfld 21234 df-top 22716 df-topon 22733 df-topsp 22755 df-bases 22769 df-cn 23051 df-cnp 23052 df-tx 23386 df-hmeo 23579 df-xms 24146 df-ms 24147 df-tms 24148 |
This theorem is referenced by: stoweidlem62 45237 |
Copyright terms: Public domain | W3C validator |