Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem47 | Structured version Visualization version GIF version |
Description: Subtracting a constant from a real continuous function gives another continuous function. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem47.1 | ⊢ Ⅎ𝑡𝐹 |
stoweidlem47.2 | ⊢ Ⅎ𝑡𝑆 |
stoweidlem47.3 | ⊢ Ⅎ𝑡𝜑 |
stoweidlem47.4 | ⊢ 𝑇 = ∪ 𝐽 |
stoweidlem47.5 | ⊢ 𝐺 = (𝑇 × {-𝑆}) |
stoweidlem47.6 | ⊢ 𝐾 = (topGen‘ran (,)) |
stoweidlem47.7 | ⊢ (𝜑 → 𝐽 ∈ Top) |
stoweidlem47.8 | ⊢ 𝐶 = (𝐽 Cn 𝐾) |
stoweidlem47.9 | ⊢ (𝜑 → 𝐹 ∈ 𝐶) |
stoweidlem47.10 | ⊢ (𝜑 → 𝑆 ∈ ℝ) |
Ref | Expression |
---|---|
stoweidlem47 | ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − 𝑆)) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem47.3 | . . 3 ⊢ Ⅎ𝑡𝜑 | |
2 | stoweidlem47.5 | . . . . . . 7 ⊢ 𝐺 = (𝑇 × {-𝑆}) | |
3 | 2 | fveq1i 6652 | . . . . . 6 ⊢ (𝐺‘𝑡) = ((𝑇 × {-𝑆})‘𝑡) |
4 | stoweidlem47.10 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ ℝ) | |
5 | 4 | renegcld 11090 | . . . . . . 7 ⊢ (𝜑 → -𝑆 ∈ ℝ) |
6 | fvconst2g 6948 | . . . . . . 7 ⊢ ((-𝑆 ∈ ℝ ∧ 𝑡 ∈ 𝑇) → ((𝑇 × {-𝑆})‘𝑡) = -𝑆) | |
7 | 5, 6 | sylan 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝑇 × {-𝑆})‘𝑡) = -𝑆) |
8 | 3, 7 | syl5eq 2806 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐺‘𝑡) = -𝑆) |
9 | 8 | oveq2d 7159 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡) + (𝐺‘𝑡)) = ((𝐹‘𝑡) + -𝑆)) |
10 | stoweidlem47.6 | . . . . . . . 8 ⊢ 𝐾 = (topGen‘ran (,)) | |
11 | stoweidlem47.4 | . . . . . . . 8 ⊢ 𝑇 = ∪ 𝐽 | |
12 | stoweidlem47.8 | . . . . . . . 8 ⊢ 𝐶 = (𝐽 Cn 𝐾) | |
13 | stoweidlem47.9 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ 𝐶) | |
14 | 10, 11, 12, 13 | fcnre 42012 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
15 | 14 | ffvelrnda 6835 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℝ) |
16 | 15 | recnd 10692 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℂ) |
17 | 4 | recnd 10692 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ℂ) |
18 | 17 | adantr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑆 ∈ ℂ) |
19 | 16, 18 | negsubd 11026 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡) + -𝑆) = ((𝐹‘𝑡) − 𝑆)) |
20 | 9, 19 | eqtrd 2794 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡) + (𝐺‘𝑡)) = ((𝐹‘𝑡) − 𝑆)) |
21 | 1, 20 | mpteq2da 5119 | . 2 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − 𝑆))) |
22 | stoweidlem47.1 | . . . 4 ⊢ Ⅎ𝑡𝐹 | |
23 | nfcv 2917 | . . . . . 6 ⊢ Ⅎ𝑡𝑇 | |
24 | stoweidlem47.2 | . . . . . . . 8 ⊢ Ⅎ𝑡𝑆 | |
25 | 24 | nfneg 10905 | . . . . . . 7 ⊢ Ⅎ𝑡-𝑆 |
26 | 25 | nfsn 4593 | . . . . . 6 ⊢ Ⅎ𝑡{-𝑆} |
27 | 23, 26 | nfxp 5550 | . . . . 5 ⊢ Ⅎ𝑡(𝑇 × {-𝑆}) |
28 | 2, 27 | nfcxfr 2915 | . . . 4 ⊢ Ⅎ𝑡𝐺 |
29 | stoweidlem47.7 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Top) | |
30 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑇 = ∪ 𝐽) |
31 | istopon 21597 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑇) ↔ (𝐽 ∈ Top ∧ 𝑇 = ∪ 𝐽)) | |
32 | 29, 30, 31 | sylanbrc 587 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑇)) |
33 | 13, 12 | eleqtrdi 2861 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
34 | retopon 23450 | . . . . . . . 8 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
35 | 10, 34 | eqeltri 2847 | . . . . . . 7 ⊢ 𝐾 ∈ (TopOn‘ℝ) |
36 | 35 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘ℝ)) |
37 | cnconst2 21968 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑇) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ -𝑆 ∈ ℝ) → (𝑇 × {-𝑆}) ∈ (𝐽 Cn 𝐾)) | |
38 | 32, 36, 5, 37 | syl3anc 1369 | . . . . 5 ⊢ (𝜑 → (𝑇 × {-𝑆}) ∈ (𝐽 Cn 𝐾)) |
39 | 2, 38 | eqeltrid 2855 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
40 | 22, 28, 1, 10, 32, 33, 39 | refsum2cn 42025 | . . 3 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) ∈ (𝐽 Cn 𝐾)) |
41 | 40, 12 | eleqtrrdi 2862 | . 2 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) ∈ 𝐶) |
42 | 21, 41 | eqeltrrd 2852 | 1 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − 𝑆)) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2112 Ⅎwnfc 2897 {csn 4515 ∪ cuni 4791 ↦ cmpt 5105 × cxp 5515 ran crn 5518 ‘cfv 6328 (class class class)co 7143 ℂcc 10558 ℝcr 10559 + caddc 10563 − cmin 10893 -cneg 10894 (,)cioo 12764 topGenctg 16754 Topctop 21578 TopOnctopon 21595 Cn ccn 21909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5149 ax-sep 5162 ax-nul 5169 ax-pow 5227 ax-pr 5291 ax-un 7452 ax-inf2 9122 ax-cnex 10616 ax-resscn 10617 ax-1cn 10618 ax-icn 10619 ax-addcl 10620 ax-addrcl 10621 ax-mulcl 10622 ax-mulrcl 10623 ax-mulcom 10624 ax-addass 10625 ax-mulass 10626 ax-distr 10627 ax-i2m1 10628 ax-1ne0 10629 ax-1rid 10630 ax-rnegex 10631 ax-rrecex 10632 ax-cnre 10633 ax-pre-lttri 10634 ax-pre-lttrn 10635 ax-pre-ltadd 10636 ax-pre-mulgt0 10637 ax-pre-sup 10638 ax-addf 10639 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-nel 3054 df-ral 3073 df-rex 3074 df-reu 3075 df-rmo 3076 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-pss 3873 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-tp 4520 df-op 4522 df-uni 4792 df-int 4832 df-iun 4878 df-iin 4879 df-br 5026 df-opab 5088 df-mpt 5106 df-tr 5132 df-id 5423 df-eprel 5428 df-po 5436 df-so 5437 df-fr 5476 df-se 5477 df-we 5478 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-pred 6119 df-ord 6165 df-on 6166 df-lim 6167 df-suc 6168 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-isom 6337 df-riota 7101 df-ov 7146 df-oprab 7147 df-mpo 7148 df-of 7398 df-om 7573 df-1st 7686 df-2nd 7687 df-supp 7829 df-wrecs 7950 df-recs 8011 df-rdg 8049 df-1o 8105 df-2o 8106 df-oadd 8109 df-er 8292 df-map 8411 df-ixp 8473 df-en 8521 df-dom 8522 df-sdom 8523 df-fin 8524 df-fsupp 8852 df-fi 8893 df-sup 8924 df-inf 8925 df-oi 8992 df-card 9386 df-pnf 10700 df-mnf 10701 df-xr 10702 df-ltxr 10703 df-le 10704 df-sub 10895 df-neg 10896 df-div 11321 df-nn 11660 df-2 11722 df-3 11723 df-4 11724 df-5 11725 df-6 11726 df-7 11727 df-8 11728 df-9 11729 df-n0 11920 df-z 12006 df-dec 12123 df-uz 12268 df-q 12374 df-rp 12416 df-xneg 12533 df-xadd 12534 df-xmul 12535 df-ioo 12768 df-icc 12771 df-fz 12925 df-fzo 13068 df-seq 13404 df-exp 13465 df-hash 13726 df-cj 14491 df-re 14492 df-im 14493 df-sqrt 14627 df-abs 14628 df-clim 14878 df-sum 15076 df-struct 16528 df-ndx 16529 df-slot 16530 df-base 16532 df-sets 16533 df-ress 16534 df-plusg 16621 df-mulr 16622 df-starv 16623 df-sca 16624 df-vsca 16625 df-ip 16626 df-tset 16627 df-ple 16628 df-ds 16630 df-unif 16631 df-hom 16632 df-cco 16633 df-rest 16739 df-topn 16740 df-0g 16758 df-gsum 16759 df-topgen 16760 df-pt 16761 df-prds 16764 df-xrs 16818 df-qtop 16823 df-imas 16824 df-xps 16826 df-mre 16900 df-mrc 16901 df-acs 16903 df-mgm 17903 df-sgrp 17952 df-mnd 17963 df-submnd 18008 df-mulg 18277 df-cntz 18499 df-cmn 18960 df-psmet 20143 df-xmet 20144 df-met 20145 df-bl 20146 df-mopn 20147 df-cnfld 20152 df-top 21579 df-topon 21596 df-topsp 21618 df-bases 21631 df-cn 21912 df-cnp 21913 df-tx 22247 df-hmeo 22440 df-xms 23007 df-ms 23008 df-tms 23009 |
This theorem is referenced by: stoweidlem62 43055 |
Copyright terms: Public domain | W3C validator |