Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem47 | Structured version Visualization version GIF version |
Description: Subtracting a constant from a real continuous function gives another continuous function. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem47.1 | ⊢ Ⅎ𝑡𝐹 |
stoweidlem47.2 | ⊢ Ⅎ𝑡𝑆 |
stoweidlem47.3 | ⊢ Ⅎ𝑡𝜑 |
stoweidlem47.4 | ⊢ 𝑇 = ∪ 𝐽 |
stoweidlem47.5 | ⊢ 𝐺 = (𝑇 × {-𝑆}) |
stoweidlem47.6 | ⊢ 𝐾 = (topGen‘ran (,)) |
stoweidlem47.7 | ⊢ (𝜑 → 𝐽 ∈ Top) |
stoweidlem47.8 | ⊢ 𝐶 = (𝐽 Cn 𝐾) |
stoweidlem47.9 | ⊢ (𝜑 → 𝐹 ∈ 𝐶) |
stoweidlem47.10 | ⊢ (𝜑 → 𝑆 ∈ ℝ) |
Ref | Expression |
---|---|
stoweidlem47 | ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − 𝑆)) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem47.3 | . . 3 ⊢ Ⅎ𝑡𝜑 | |
2 | stoweidlem47.5 | . . . . . . 7 ⊢ 𝐺 = (𝑇 × {-𝑆}) | |
3 | 2 | fveq1i 6775 | . . . . . 6 ⊢ (𝐺‘𝑡) = ((𝑇 × {-𝑆})‘𝑡) |
4 | stoweidlem47.10 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ ℝ) | |
5 | 4 | renegcld 11402 | . . . . . . 7 ⊢ (𝜑 → -𝑆 ∈ ℝ) |
6 | fvconst2g 7077 | . . . . . . 7 ⊢ ((-𝑆 ∈ ℝ ∧ 𝑡 ∈ 𝑇) → ((𝑇 × {-𝑆})‘𝑡) = -𝑆) | |
7 | 5, 6 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝑇 × {-𝑆})‘𝑡) = -𝑆) |
8 | 3, 7 | eqtrid 2790 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐺‘𝑡) = -𝑆) |
9 | 8 | oveq2d 7291 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡) + (𝐺‘𝑡)) = ((𝐹‘𝑡) + -𝑆)) |
10 | stoweidlem47.6 | . . . . . . . 8 ⊢ 𝐾 = (topGen‘ran (,)) | |
11 | stoweidlem47.4 | . . . . . . . 8 ⊢ 𝑇 = ∪ 𝐽 | |
12 | stoweidlem47.8 | . . . . . . . 8 ⊢ 𝐶 = (𝐽 Cn 𝐾) | |
13 | stoweidlem47.9 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ 𝐶) | |
14 | 10, 11, 12, 13 | fcnre 42568 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
15 | 14 | ffvelrnda 6961 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℝ) |
16 | 15 | recnd 11003 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℂ) |
17 | 4 | recnd 11003 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ℂ) |
18 | 17 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑆 ∈ ℂ) |
19 | 16, 18 | negsubd 11338 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡) + -𝑆) = ((𝐹‘𝑡) − 𝑆)) |
20 | 9, 19 | eqtrd 2778 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡) + (𝐺‘𝑡)) = ((𝐹‘𝑡) − 𝑆)) |
21 | 1, 20 | mpteq2da 5172 | . 2 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − 𝑆))) |
22 | stoweidlem47.1 | . . . 4 ⊢ Ⅎ𝑡𝐹 | |
23 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑡𝑇 | |
24 | stoweidlem47.2 | . . . . . . . 8 ⊢ Ⅎ𝑡𝑆 | |
25 | 24 | nfneg 11217 | . . . . . . 7 ⊢ Ⅎ𝑡-𝑆 |
26 | 25 | nfsn 4643 | . . . . . 6 ⊢ Ⅎ𝑡{-𝑆} |
27 | 23, 26 | nfxp 5622 | . . . . 5 ⊢ Ⅎ𝑡(𝑇 × {-𝑆}) |
28 | 2, 27 | nfcxfr 2905 | . . . 4 ⊢ Ⅎ𝑡𝐺 |
29 | stoweidlem47.7 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Top) | |
30 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑇 = ∪ 𝐽) |
31 | istopon 22061 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑇) ↔ (𝐽 ∈ Top ∧ 𝑇 = ∪ 𝐽)) | |
32 | 29, 30, 31 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑇)) |
33 | 13, 12 | eleqtrdi 2849 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
34 | retopon 23927 | . . . . . . . 8 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
35 | 10, 34 | eqeltri 2835 | . . . . . . 7 ⊢ 𝐾 ∈ (TopOn‘ℝ) |
36 | 35 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘ℝ)) |
37 | cnconst2 22434 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑇) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ -𝑆 ∈ ℝ) → (𝑇 × {-𝑆}) ∈ (𝐽 Cn 𝐾)) | |
38 | 32, 36, 5, 37 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝑇 × {-𝑆}) ∈ (𝐽 Cn 𝐾)) |
39 | 2, 38 | eqeltrid 2843 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
40 | 22, 28, 1, 10, 32, 33, 39 | refsum2cn 42581 | . . 3 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) ∈ (𝐽 Cn 𝐾)) |
41 | 40, 12 | eleqtrrdi 2850 | . 2 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) ∈ 𝐶) |
42 | 21, 41 | eqeltrrd 2840 | 1 ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − 𝑆)) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 {csn 4561 ∪ cuni 4839 ↦ cmpt 5157 × cxp 5587 ran crn 5590 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝcr 10870 + caddc 10874 − cmin 11205 -cneg 11206 (,)cioo 13079 topGenctg 17148 Topctop 22042 TopOnctopon 22059 Cn ccn 22375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-icc 13086 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cn 22378 df-cnp 22379 df-tx 22713 df-hmeo 22906 df-xms 23473 df-ms 23474 df-tms 23475 |
This theorem is referenced by: stoweidlem62 43603 |
Copyright terms: Public domain | W3C validator |