Proof of Theorem stoweidlem23
Step | Hyp | Ref
| Expression |
1 | | stoweidlem23.3 |
. . 3
⊢ 𝐻 = (𝑡 ∈ 𝑇 ↦ ((𝐺‘𝑡) − (𝐺‘𝑍))) |
2 | | stoweidlem23.1 |
. . . . 5
⊢
Ⅎ𝑡𝜑 |
3 | | stoweidlem23.9 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ 𝐴) |
4 | 3 | ancli 549 |
. . . . . . . . 9
⊢ (𝜑 → (𝜑 ∧ 𝐺 ∈ 𝐴)) |
5 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐺 → (𝑓 ∈ 𝐴 ↔ 𝐺 ∈ 𝐴)) |
6 | 5 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐺 → ((𝜑 ∧ 𝑓 ∈ 𝐴) ↔ (𝜑 ∧ 𝐺 ∈ 𝐴))) |
7 | | feq1 6581 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐺 → (𝑓:𝑇⟶ℝ ↔ 𝐺:𝑇⟶ℝ)) |
8 | 6, 7 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐺 → (((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ 𝐺 ∈ 𝐴) → 𝐺:𝑇⟶ℝ))) |
9 | | stoweidlem23.4 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
10 | 8, 9 | vtoclg 3505 |
. . . . . . . . 9
⊢ (𝐺 ∈ 𝐴 → ((𝜑 ∧ 𝐺 ∈ 𝐴) → 𝐺:𝑇⟶ℝ)) |
11 | 3, 4, 10 | sylc 65 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:𝑇⟶ℝ) |
12 | 11 | ffvelrnda 6961 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐺‘𝑡) ∈ ℝ) |
13 | 12 | recnd 11003 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐺‘𝑡) ∈ ℂ) |
14 | | stoweidlem23.8 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ 𝑇) |
15 | 11, 14 | ffvelrnd 6962 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘𝑍) ∈ ℝ) |
16 | 15 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐺‘𝑍) ∈ ℝ) |
17 | 16 | recnd 11003 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐺‘𝑍) ∈ ℂ) |
18 | 13, 17 | negsubd 11338 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐺‘𝑡) + -(𝐺‘𝑍)) = ((𝐺‘𝑡) − (𝐺‘𝑍))) |
19 | 2, 18 | mpteq2da 5172 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐺‘𝑡) + -(𝐺‘𝑍))) = (𝑡 ∈ 𝑇 ↦ ((𝐺‘𝑡) − (𝐺‘𝑍)))) |
20 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ 𝑇) |
21 | 15 | renegcld 11402 |
. . . . . . . . 9
⊢ (𝜑 → -(𝐺‘𝑍) ∈ ℝ) |
22 | 21 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → -(𝐺‘𝑍) ∈ ℝ) |
23 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍)) = (𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍)) |
24 | 23 | fvmpt2 6886 |
. . . . . . . 8
⊢ ((𝑡 ∈ 𝑇 ∧ -(𝐺‘𝑍) ∈ ℝ) → ((𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍))‘𝑡) = -(𝐺‘𝑍)) |
25 | 20, 22, 24 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍))‘𝑡) = -(𝐺‘𝑍)) |
26 | 25 | oveq2d 7291 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐺‘𝑡) + ((𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍))‘𝑡)) = ((𝐺‘𝑡) + -(𝐺‘𝑍))) |
27 | 2, 26 | mpteq2da 5172 |
. . . . 5
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐺‘𝑡) + ((𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍))‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((𝐺‘𝑡) + -(𝐺‘𝑍)))) |
28 | 21 | ancli 549 |
. . . . . . 7
⊢ (𝜑 → (𝜑 ∧ -(𝐺‘𝑍) ∈ ℝ)) |
29 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑥 = -(𝐺‘𝑍) → (𝑥 ∈ ℝ ↔ -(𝐺‘𝑍) ∈ ℝ)) |
30 | 29 | anbi2d 629 |
. . . . . . . . 9
⊢ (𝑥 = -(𝐺‘𝑍) → ((𝜑 ∧ 𝑥 ∈ ℝ) ↔ (𝜑 ∧ -(𝐺‘𝑍) ∈ ℝ))) |
31 | | stoweidlem23.2 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡𝐺 |
32 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡𝑍 |
33 | 31, 32 | nffv 6784 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡(𝐺‘𝑍) |
34 | 33 | nfneg 11217 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡-(𝐺‘𝑍) |
35 | 34 | nfeq2 2924 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡 𝑥 = -(𝐺‘𝑍) |
36 | | simpl 483 |
. . . . . . . . . . 11
⊢ ((𝑥 = -(𝐺‘𝑍) ∧ 𝑡 ∈ 𝑇) → 𝑥 = -(𝐺‘𝑍)) |
37 | 35, 36 | mpteq2da 5172 |
. . . . . . . . . 10
⊢ (𝑥 = -(𝐺‘𝑍) → (𝑡 ∈ 𝑇 ↦ 𝑥) = (𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍))) |
38 | 37 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑥 = -(𝐺‘𝑍) → ((𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍)) ∈ 𝐴)) |
39 | 30, 38 | imbi12d 345 |
. . . . . . . 8
⊢ (𝑥 = -(𝐺‘𝑍) → (((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) ↔ ((𝜑 ∧ -(𝐺‘𝑍) ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍)) ∈ 𝐴))) |
40 | | stoweidlem23.6 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
41 | 39, 40 | vtoclg 3505 |
. . . . . . 7
⊢ (-(𝐺‘𝑍) ∈ ℝ → ((𝜑 ∧ -(𝐺‘𝑍) ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍)) ∈ 𝐴)) |
42 | 21, 28, 41 | sylc 65 |
. . . . . 6
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍)) ∈ 𝐴) |
43 | | stoweidlem23.5 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
44 | | nfmpt1 5182 |
. . . . . . 7
⊢
Ⅎ𝑡(𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍)) |
45 | 43, 31, 44 | stoweidlem8 43549 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐺 ∈ 𝐴 ∧ (𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐺‘𝑡) + ((𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍))‘𝑡))) ∈ 𝐴) |
46 | 3, 42, 45 | mpd3an23 1462 |
. . . . 5
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐺‘𝑡) + ((𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍))‘𝑡))) ∈ 𝐴) |
47 | 27, 46 | eqeltrrd 2840 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐺‘𝑡) + -(𝐺‘𝑍))) ∈ 𝐴) |
48 | 19, 47 | eqeltrrd 2840 |
. . 3
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐺‘𝑡) − (𝐺‘𝑍))) ∈ 𝐴) |
49 | 1, 48 | eqeltrid 2843 |
. 2
⊢ (𝜑 → 𝐻 ∈ 𝐴) |
50 | | stoweidlem23.7 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ 𝑇) |
51 | 11, 50 | ffvelrnd 6962 |
. . . . 5
⊢ (𝜑 → (𝐺‘𝑆) ∈ ℝ) |
52 | 51 | recnd 11003 |
. . . 4
⊢ (𝜑 → (𝐺‘𝑆) ∈ ℂ) |
53 | 15 | recnd 11003 |
. . . 4
⊢ (𝜑 → (𝐺‘𝑍) ∈ ℂ) |
54 | | stoweidlem23.10 |
. . . 4
⊢ (𝜑 → (𝐺‘𝑆) ≠ (𝐺‘𝑍)) |
55 | 52, 53, 54 | subne0d 11341 |
. . 3
⊢ (𝜑 → ((𝐺‘𝑆) − (𝐺‘𝑍)) ≠ 0) |
56 | 51, 15 | resubcld 11403 |
. . . 4
⊢ (𝜑 → ((𝐺‘𝑆) − (𝐺‘𝑍)) ∈ ℝ) |
57 | | nfcv 2907 |
. . . . 5
⊢
Ⅎ𝑡𝑆 |
58 | 31, 57 | nffv 6784 |
. . . . . 6
⊢
Ⅎ𝑡(𝐺‘𝑆) |
59 | | nfcv 2907 |
. . . . . 6
⊢
Ⅎ𝑡
− |
60 | 58, 59, 33 | nfov 7305 |
. . . . 5
⊢
Ⅎ𝑡((𝐺‘𝑆) − (𝐺‘𝑍)) |
61 | | fveq2 6774 |
. . . . . 6
⊢ (𝑡 = 𝑆 → (𝐺‘𝑡) = (𝐺‘𝑆)) |
62 | 61 | oveq1d 7290 |
. . . . 5
⊢ (𝑡 = 𝑆 → ((𝐺‘𝑡) − (𝐺‘𝑍)) = ((𝐺‘𝑆) − (𝐺‘𝑍))) |
63 | 57, 60, 62, 1 | fvmptf 6896 |
. . . 4
⊢ ((𝑆 ∈ 𝑇 ∧ ((𝐺‘𝑆) − (𝐺‘𝑍)) ∈ ℝ) → (𝐻‘𝑆) = ((𝐺‘𝑆) − (𝐺‘𝑍))) |
64 | 50, 56, 63 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝐻‘𝑆) = ((𝐺‘𝑆) − (𝐺‘𝑍))) |
65 | 15, 15 | resubcld 11403 |
. . . . 5
⊢ (𝜑 → ((𝐺‘𝑍) − (𝐺‘𝑍)) ∈ ℝ) |
66 | 33, 59, 33 | nfov 7305 |
. . . . . 6
⊢
Ⅎ𝑡((𝐺‘𝑍) − (𝐺‘𝑍)) |
67 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑡 = 𝑍 → (𝐺‘𝑡) = (𝐺‘𝑍)) |
68 | 67 | oveq1d 7290 |
. . . . . 6
⊢ (𝑡 = 𝑍 → ((𝐺‘𝑡) − (𝐺‘𝑍)) = ((𝐺‘𝑍) − (𝐺‘𝑍))) |
69 | 32, 66, 68, 1 | fvmptf 6896 |
. . . . 5
⊢ ((𝑍 ∈ 𝑇 ∧ ((𝐺‘𝑍) − (𝐺‘𝑍)) ∈ ℝ) → (𝐻‘𝑍) = ((𝐺‘𝑍) − (𝐺‘𝑍))) |
70 | 14, 65, 69 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝐻‘𝑍) = ((𝐺‘𝑍) − (𝐺‘𝑍))) |
71 | 53 | subidd 11320 |
. . . 4
⊢ (𝜑 → ((𝐺‘𝑍) − (𝐺‘𝑍)) = 0) |
72 | 70, 71 | eqtrd 2778 |
. . 3
⊢ (𝜑 → (𝐻‘𝑍) = 0) |
73 | 55, 64, 72 | 3netr4d 3021 |
. 2
⊢ (𝜑 → (𝐻‘𝑆) ≠ (𝐻‘𝑍)) |
74 | 49, 73, 72 | 3jca 1127 |
1
⊢ (𝜑 → (𝐻 ∈ 𝐴 ∧ (𝐻‘𝑆) ≠ (𝐻‘𝑍) ∧ (𝐻‘𝑍) = 0)) |