Proof of Theorem stoweidlem23
| Step | Hyp | Ref
| Expression |
| 1 | | stoweidlem23.3 |
. . 3
⊢ 𝐻 = (𝑡 ∈ 𝑇 ↦ ((𝐺‘𝑡) − (𝐺‘𝑍))) |
| 2 | | stoweidlem23.1 |
. . . . 5
⊢
Ⅎ𝑡𝜑 |
| 3 | | stoweidlem23.9 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ 𝐴) |
| 4 | 3 | ancli 548 |
. . . . . . . . 9
⊢ (𝜑 → (𝜑 ∧ 𝐺 ∈ 𝐴)) |
| 5 | | eleq1 2829 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐺 → (𝑓 ∈ 𝐴 ↔ 𝐺 ∈ 𝐴)) |
| 6 | 5 | anbi2d 630 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐺 → ((𝜑 ∧ 𝑓 ∈ 𝐴) ↔ (𝜑 ∧ 𝐺 ∈ 𝐴))) |
| 7 | | feq1 6716 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐺 → (𝑓:𝑇⟶ℝ ↔ 𝐺:𝑇⟶ℝ)) |
| 8 | 6, 7 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐺 → (((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ 𝐺 ∈ 𝐴) → 𝐺:𝑇⟶ℝ))) |
| 9 | | stoweidlem23.4 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
| 10 | 8, 9 | vtoclg 3554 |
. . . . . . . . 9
⊢ (𝐺 ∈ 𝐴 → ((𝜑 ∧ 𝐺 ∈ 𝐴) → 𝐺:𝑇⟶ℝ)) |
| 11 | 3, 4, 10 | sylc 65 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:𝑇⟶ℝ) |
| 12 | 11 | ffvelcdmda 7104 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐺‘𝑡) ∈ ℝ) |
| 13 | 12 | recnd 11289 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐺‘𝑡) ∈ ℂ) |
| 14 | | stoweidlem23.8 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ 𝑇) |
| 15 | 11, 14 | ffvelcdmd 7105 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘𝑍) ∈ ℝ) |
| 16 | 15 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐺‘𝑍) ∈ ℝ) |
| 17 | 16 | recnd 11289 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐺‘𝑍) ∈ ℂ) |
| 18 | 13, 17 | negsubd 11626 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐺‘𝑡) + -(𝐺‘𝑍)) = ((𝐺‘𝑡) − (𝐺‘𝑍))) |
| 19 | 2, 18 | mpteq2da 5240 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐺‘𝑡) + -(𝐺‘𝑍))) = (𝑡 ∈ 𝑇 ↦ ((𝐺‘𝑡) − (𝐺‘𝑍)))) |
| 20 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ 𝑇) |
| 21 | 15 | renegcld 11690 |
. . . . . . . . 9
⊢ (𝜑 → -(𝐺‘𝑍) ∈ ℝ) |
| 22 | 21 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → -(𝐺‘𝑍) ∈ ℝ) |
| 23 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍)) = (𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍)) |
| 24 | 23 | fvmpt2 7027 |
. . . . . . . 8
⊢ ((𝑡 ∈ 𝑇 ∧ -(𝐺‘𝑍) ∈ ℝ) → ((𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍))‘𝑡) = -(𝐺‘𝑍)) |
| 25 | 20, 22, 24 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍))‘𝑡) = -(𝐺‘𝑍)) |
| 26 | 25 | oveq2d 7447 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐺‘𝑡) + ((𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍))‘𝑡)) = ((𝐺‘𝑡) + -(𝐺‘𝑍))) |
| 27 | 2, 26 | mpteq2da 5240 |
. . . . 5
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐺‘𝑡) + ((𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍))‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((𝐺‘𝑡) + -(𝐺‘𝑍)))) |
| 28 | 21 | ancli 548 |
. . . . . . 7
⊢ (𝜑 → (𝜑 ∧ -(𝐺‘𝑍) ∈ ℝ)) |
| 29 | | eleq1 2829 |
. . . . . . . . . 10
⊢ (𝑥 = -(𝐺‘𝑍) → (𝑥 ∈ ℝ ↔ -(𝐺‘𝑍) ∈ ℝ)) |
| 30 | 29 | anbi2d 630 |
. . . . . . . . 9
⊢ (𝑥 = -(𝐺‘𝑍) → ((𝜑 ∧ 𝑥 ∈ ℝ) ↔ (𝜑 ∧ -(𝐺‘𝑍) ∈ ℝ))) |
| 31 | | stoweidlem23.2 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡𝐺 |
| 32 | | nfcv 2905 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡𝑍 |
| 33 | 31, 32 | nffv 6916 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡(𝐺‘𝑍) |
| 34 | 33 | nfneg 11504 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡-(𝐺‘𝑍) |
| 35 | 34 | nfeq2 2923 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡 𝑥 = -(𝐺‘𝑍) |
| 36 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑥 = -(𝐺‘𝑍) ∧ 𝑡 ∈ 𝑇) → 𝑥 = -(𝐺‘𝑍)) |
| 37 | 35, 36 | mpteq2da 5240 |
. . . . . . . . . 10
⊢ (𝑥 = -(𝐺‘𝑍) → (𝑡 ∈ 𝑇 ↦ 𝑥) = (𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍))) |
| 38 | 37 | eleq1d 2826 |
. . . . . . . . 9
⊢ (𝑥 = -(𝐺‘𝑍) → ((𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍)) ∈ 𝐴)) |
| 39 | 30, 38 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑥 = -(𝐺‘𝑍) → (((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) ↔ ((𝜑 ∧ -(𝐺‘𝑍) ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍)) ∈ 𝐴))) |
| 40 | | stoweidlem23.6 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
| 41 | 39, 40 | vtoclg 3554 |
. . . . . . 7
⊢ (-(𝐺‘𝑍) ∈ ℝ → ((𝜑 ∧ -(𝐺‘𝑍) ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍)) ∈ 𝐴)) |
| 42 | 21, 28, 41 | sylc 65 |
. . . . . 6
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍)) ∈ 𝐴) |
| 43 | | stoweidlem23.5 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
| 44 | | nfmpt1 5250 |
. . . . . . 7
⊢
Ⅎ𝑡(𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍)) |
| 45 | 43, 31, 44 | stoweidlem8 46023 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐺 ∈ 𝐴 ∧ (𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐺‘𝑡) + ((𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍))‘𝑡))) ∈ 𝐴) |
| 46 | 3, 42, 45 | mpd3an23 1465 |
. . . . 5
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐺‘𝑡) + ((𝑡 ∈ 𝑇 ↦ -(𝐺‘𝑍))‘𝑡))) ∈ 𝐴) |
| 47 | 27, 46 | eqeltrrd 2842 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐺‘𝑡) + -(𝐺‘𝑍))) ∈ 𝐴) |
| 48 | 19, 47 | eqeltrrd 2842 |
. . 3
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐺‘𝑡) − (𝐺‘𝑍))) ∈ 𝐴) |
| 49 | 1, 48 | eqeltrid 2845 |
. 2
⊢ (𝜑 → 𝐻 ∈ 𝐴) |
| 50 | | stoweidlem23.7 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ 𝑇) |
| 51 | 11, 50 | ffvelcdmd 7105 |
. . . . 5
⊢ (𝜑 → (𝐺‘𝑆) ∈ ℝ) |
| 52 | 51 | recnd 11289 |
. . . 4
⊢ (𝜑 → (𝐺‘𝑆) ∈ ℂ) |
| 53 | 15 | recnd 11289 |
. . . 4
⊢ (𝜑 → (𝐺‘𝑍) ∈ ℂ) |
| 54 | | stoweidlem23.10 |
. . . 4
⊢ (𝜑 → (𝐺‘𝑆) ≠ (𝐺‘𝑍)) |
| 55 | 52, 53, 54 | subne0d 11629 |
. . 3
⊢ (𝜑 → ((𝐺‘𝑆) − (𝐺‘𝑍)) ≠ 0) |
| 56 | 51, 15 | resubcld 11691 |
. . . 4
⊢ (𝜑 → ((𝐺‘𝑆) − (𝐺‘𝑍)) ∈ ℝ) |
| 57 | | nfcv 2905 |
. . . . 5
⊢
Ⅎ𝑡𝑆 |
| 58 | 31, 57 | nffv 6916 |
. . . . . 6
⊢
Ⅎ𝑡(𝐺‘𝑆) |
| 59 | | nfcv 2905 |
. . . . . 6
⊢
Ⅎ𝑡
− |
| 60 | 58, 59, 33 | nfov 7461 |
. . . . 5
⊢
Ⅎ𝑡((𝐺‘𝑆) − (𝐺‘𝑍)) |
| 61 | | fveq2 6906 |
. . . . . 6
⊢ (𝑡 = 𝑆 → (𝐺‘𝑡) = (𝐺‘𝑆)) |
| 62 | 61 | oveq1d 7446 |
. . . . 5
⊢ (𝑡 = 𝑆 → ((𝐺‘𝑡) − (𝐺‘𝑍)) = ((𝐺‘𝑆) − (𝐺‘𝑍))) |
| 63 | 57, 60, 62, 1 | fvmptf 7037 |
. . . 4
⊢ ((𝑆 ∈ 𝑇 ∧ ((𝐺‘𝑆) − (𝐺‘𝑍)) ∈ ℝ) → (𝐻‘𝑆) = ((𝐺‘𝑆) − (𝐺‘𝑍))) |
| 64 | 50, 56, 63 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝐻‘𝑆) = ((𝐺‘𝑆) − (𝐺‘𝑍))) |
| 65 | 15, 15 | resubcld 11691 |
. . . . 5
⊢ (𝜑 → ((𝐺‘𝑍) − (𝐺‘𝑍)) ∈ ℝ) |
| 66 | 33, 59, 33 | nfov 7461 |
. . . . . 6
⊢
Ⅎ𝑡((𝐺‘𝑍) − (𝐺‘𝑍)) |
| 67 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑡 = 𝑍 → (𝐺‘𝑡) = (𝐺‘𝑍)) |
| 68 | 67 | oveq1d 7446 |
. . . . . 6
⊢ (𝑡 = 𝑍 → ((𝐺‘𝑡) − (𝐺‘𝑍)) = ((𝐺‘𝑍) − (𝐺‘𝑍))) |
| 69 | 32, 66, 68, 1 | fvmptf 7037 |
. . . . 5
⊢ ((𝑍 ∈ 𝑇 ∧ ((𝐺‘𝑍) − (𝐺‘𝑍)) ∈ ℝ) → (𝐻‘𝑍) = ((𝐺‘𝑍) − (𝐺‘𝑍))) |
| 70 | 14, 65, 69 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝐻‘𝑍) = ((𝐺‘𝑍) − (𝐺‘𝑍))) |
| 71 | 53 | subidd 11608 |
. . . 4
⊢ (𝜑 → ((𝐺‘𝑍) − (𝐺‘𝑍)) = 0) |
| 72 | 70, 71 | eqtrd 2777 |
. . 3
⊢ (𝜑 → (𝐻‘𝑍) = 0) |
| 73 | 55, 64, 72 | 3netr4d 3018 |
. 2
⊢ (𝜑 → (𝐻‘𝑆) ≠ (𝐻‘𝑍)) |
| 74 | 49, 73, 72 | 3jca 1129 |
1
⊢ (𝜑 → (𝐻 ∈ 𝐴 ∧ (𝐻‘𝑆) ≠ (𝐻‘𝑍) ∧ (𝐻‘𝑍) = 0)) |