Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ngpxms | Structured version Visualization version GIF version |
Description: A normed group is an extended metric space. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
ngpxms | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ngpms 23862 | . 2 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) | |
2 | msxms 23713 | . 2 ⊢ (𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∞MetSpcxms 23576 MetSpcms 23577 NrmGrpcngp 23839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-xp 5626 df-co 5629 df-res 5632 df-iota 6431 df-fv 6487 df-ms 23580 df-ngp 23845 |
This theorem is referenced by: ngpdsr 23867 ngpds2r 23869 ngpds3 23870 ngpds3r 23871 nmge0 23879 nmeq0 23880 minveclem4a 24700 minveclem4 24702 qqhcn 32239 qqhucn 32240 rrhcn 32245 rrhf 32246 rrexttps 32254 rrexthaus 32255 |
Copyright terms: Public domain | W3C validator |