| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ngpxms | Structured version Visualization version GIF version | ||
| Description: A normed group is an extended metric space. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| ngpxms | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpms 24488 | . 2 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) | |
| 2 | msxms 24342 | . 2 ⊢ (𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∞MetSpcxms 24205 MetSpcms 24206 NrmGrpcngp 24465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-co 5647 df-res 5650 df-iota 6464 df-fv 6519 df-ms 24209 df-ngp 24471 |
| This theorem is referenced by: ngpdsr 24493 ngpds2r 24495 ngpds3 24496 ngpds3r 24497 nmge0 24505 nmeq0 24506 minveclem4a 25330 minveclem4 25332 qqhcn 33981 qqhucn 33982 rrhcn 33987 rrhf 33988 rrexttps 33996 rrexthaus 33997 |
| Copyright terms: Public domain | W3C validator |