![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ngpxms | Structured version Visualization version GIF version |
Description: A normed group is an extended metric space. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
ngpxms | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ngpms 24634 | . 2 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) | |
2 | msxms 24485 | . 2 ⊢ (𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∞MetSpcxms 24348 MetSpcms 24349 NrmGrpcngp 24611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-co 5709 df-res 5712 df-iota 6525 df-fv 6581 df-ms 24352 df-ngp 24617 |
This theorem is referenced by: ngpdsr 24639 ngpds2r 24641 ngpds3 24642 ngpds3r 24643 nmge0 24651 nmeq0 24652 minveclem4a 25483 minveclem4 25485 qqhcn 33937 qqhucn 33938 rrhcn 33943 rrhf 33944 rrexttps 33952 rrexthaus 33953 |
Copyright terms: Public domain | W3C validator |