MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngpxms Structured version   Visualization version   GIF version

Theorem ngpxms 24489
Description: A normed group is an extended metric space. (Contributed by Mario Carneiro, 2-Oct-2015.)
Assertion
Ref Expression
ngpxms (𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp)

Proof of Theorem ngpxms
StepHypRef Expression
1 ngpms 24488 . 2 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
2 msxms 24342 . 2 (𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp)
31, 2syl 17 1 (𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  ∞MetSpcxms 24205  MetSpcms 24206  NrmGrpcngp 24465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-co 5647  df-res 5650  df-iota 6464  df-fv 6519  df-ms 24209  df-ngp 24471
This theorem is referenced by:  ngpdsr  24493  ngpds2r  24495  ngpds3  24496  ngpds3r  24497  nmge0  24505  nmeq0  24506  minveclem4a  25330  minveclem4  25332  qqhcn  33981  qqhucn  33982  rrhcn  33987  rrhf  33988  rrexttps  33996  rrexthaus  33997
  Copyright terms: Public domain W3C validator