MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngpxms Structured version   Visualization version   GIF version

Theorem ngpxms 24511
Description: A normed group is an extended metric space. (Contributed by Mario Carneiro, 2-Oct-2015.)
Assertion
Ref Expression
ngpxms (𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp)

Proof of Theorem ngpxms
StepHypRef Expression
1 ngpms 24510 . 2 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
2 msxms 24364 . 2 (𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp)
31, 2syl 17 1 (𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  ∞MetSpcxms 24227  MetSpcms 24228  NrmGrpcngp 24487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-xp 5617  df-co 5620  df-res 5623  df-iota 6432  df-fv 6484  df-ms 24231  df-ngp 24493
This theorem is referenced by:  ngpdsr  24515  ngpds2r  24517  ngpds3  24518  ngpds3r  24519  nmge0  24527  nmeq0  24528  minveclem4a  25352  minveclem4  25354  qqhcn  33996  qqhucn  33997  rrhcn  34002  rrhf  34003  rrexttps  34011  rrexthaus  34012
  Copyright terms: Public domain W3C validator