MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngpxms Structured version   Visualization version   GIF version

Theorem ngpxms 24536
Description: A normed group is an extended metric space. (Contributed by Mario Carneiro, 2-Oct-2015.)
Assertion
Ref Expression
ngpxms (𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp)

Proof of Theorem ngpxms
StepHypRef Expression
1 ngpms 24535 . 2 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
2 msxms 24389 . 2 (𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp)
31, 2syl 17 1 (𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  ∞MetSpcxms 24252  MetSpcms 24253  NrmGrpcngp 24512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-xp 5627  df-co 5630  df-res 5633  df-iota 6445  df-fv 6497  df-ms 24256  df-ngp 24518
This theorem is referenced by:  ngpdsr  24540  ngpds2r  24542  ngpds3  24543  ngpds3r  24544  nmge0  24552  nmeq0  24553  minveclem4a  25377  minveclem4  25379  qqhcn  34076  qqhucn  34077  rrhcn  34082  rrhf  34083  rrexttps  34091  rrexthaus  34092
  Copyright terms: Public domain W3C validator