MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngpxms Structured version   Visualization version   GIF version

Theorem ngpxms 23663
Description: A normed group is an extended metric space. (Contributed by Mario Carneiro, 2-Oct-2015.)
Assertion
Ref Expression
ngpxms (𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp)

Proof of Theorem ngpxms
StepHypRef Expression
1 ngpms 23662 . 2 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
2 msxms 23515 . 2 (𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp)
31, 2syl 17 1 (𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  ∞MetSpcxms 23378  MetSpcms 23379  NrmGrpcngp 23639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-co 5589  df-res 5592  df-iota 6376  df-fv 6426  df-ms 23382  df-ngp 23645
This theorem is referenced by:  ngpdsr  23667  ngpds2r  23669  ngpds3  23670  ngpds3r  23671  nmge0  23679  nmeq0  23680  minveclem4a  24499  minveclem4  24501  qqhcn  31841  qqhucn  31842  rrhcn  31847  rrhf  31848  rrexttps  31856  rrexthaus  31857
  Copyright terms: Public domain W3C validator