| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ngpxms | Structured version Visualization version GIF version | ||
| Description: A normed group is an extended metric space. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| ngpxms | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpms 24510 | . 2 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) | |
| 2 | msxms 24364 | . 2 ⊢ (𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∞MetSpcxms 24227 MetSpcms 24228 NrmGrpcngp 24487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-xp 5617 df-co 5620 df-res 5623 df-iota 6432 df-fv 6484 df-ms 24231 df-ngp 24493 |
| This theorem is referenced by: ngpdsr 24515 ngpds2r 24517 ngpds3 24518 ngpds3r 24519 nmge0 24527 nmeq0 24528 minveclem4a 25352 minveclem4 25354 qqhcn 33996 qqhucn 33997 rrhcn 34002 rrhf 34003 rrexttps 34011 rrexthaus 34012 |
| Copyright terms: Public domain | W3C validator |