MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngpxms Structured version   Visualization version   GIF version

Theorem ngpxms 23863
Description: A normed group is an extended metric space. (Contributed by Mario Carneiro, 2-Oct-2015.)
Assertion
Ref Expression
ngpxms (𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp)

Proof of Theorem ngpxms
StepHypRef Expression
1 ngpms 23862 . 2 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
2 msxms 23713 . 2 (𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp)
31, 2syl 17 1 (𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  ∞MetSpcxms 23576  MetSpcms 23577  NrmGrpcngp 23839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-xp 5626  df-co 5629  df-res 5632  df-iota 6431  df-fv 6487  df-ms 23580  df-ngp 23845
This theorem is referenced by:  ngpdsr  23867  ngpds2r  23869  ngpds3  23870  ngpds3r  23871  nmge0  23879  nmeq0  23880  minveclem4a  24700  minveclem4  24702  qqhcn  32239  qqhucn  32240  rrhcn  32245  rrhf  32246  rrexttps  32254  rrexthaus  32255
  Copyright terms: Public domain W3C validator