Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnmpt2ip | Structured version Visualization version GIF version |
Description: Continuity of inner product; analogue of cnmpt22f 22734 which cannot be used directly because ·𝑖 is not a function. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cnmpt1ip.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
cnmpt1ip.c | ⊢ 𝐶 = (TopOpen‘ℂfld) |
cnmpt1ip.h | ⊢ , = (·𝑖‘𝑊) |
cnmpt1ip.r | ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) |
cnmpt1ip.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) |
cnmpt2ip.l | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) |
cnmpt2ip.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) |
cnmpt2ip.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) |
Ref | Expression |
---|---|
cnmpt2ip | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 , 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt1ip.k | . . . . . . . . . 10 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) | |
2 | cnmpt2ip.l | . . . . . . . . . 10 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) | |
3 | txtopon 22650 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌))) | |
4 | 1, 2, 3 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌))) |
5 | cnmpt1ip.r | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) | |
6 | cphngp 24242 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp) | |
7 | ngptps 23664 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ NrmGrp → 𝑊 ∈ TopSp) | |
8 | 5, 6, 7 | 3syl 18 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ TopSp) |
9 | eqid 2738 | . . . . . . . . . . 11 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
10 | cnmpt1ip.j | . . . . . . . . . . 11 ⊢ 𝐽 = (TopOpen‘𝑊) | |
11 | 9, 10 | istps 21991 | . . . . . . . . . 10 ⊢ (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑊))) |
12 | 8, 11 | sylib 217 | . . . . . . . . 9 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘(Base‘𝑊))) |
13 | cnmpt2ip.a | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) | |
14 | cnf2 22308 | . . . . . . . . 9 ⊢ (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶(Base‘𝑊)) | |
15 | 4, 12, 13, 14 | syl3anc 1369 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶(Base‘𝑊)) |
16 | eqid 2738 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) | |
17 | 16 | fmpo 7881 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴 ∈ (Base‘𝑊) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶(Base‘𝑊)) |
18 | 15, 17 | sylibr 233 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴 ∈ (Base‘𝑊)) |
19 | 18 | r19.21bi 3132 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 𝐴 ∈ (Base‘𝑊)) |
20 | 19 | r19.21bi 3132 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ (Base‘𝑊)) |
21 | cnmpt2ip.b | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) | |
22 | cnf2 22308 | . . . . . . . . 9 ⊢ (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊)) | |
23 | 4, 12, 21, 22 | syl3anc 1369 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊)) |
24 | eqid 2738 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) | |
25 | 24 | fmpo 7881 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐵 ∈ (Base‘𝑊) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊)) |
26 | 23, 25 | sylibr 233 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐵 ∈ (Base‘𝑊)) |
27 | 26 | r19.21bi 3132 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 𝐵 ∈ (Base‘𝑊)) |
28 | 27 | r19.21bi 3132 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → 𝐵 ∈ (Base‘𝑊)) |
29 | cnmpt1ip.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
30 | eqid 2738 | . . . . . 6 ⊢ (·if‘𝑊) = (·if‘𝑊) | |
31 | 9, 29, 30 | ipfval 20766 | . . . . 5 ⊢ ((𝐴 ∈ (Base‘𝑊) ∧ 𝐵 ∈ (Base‘𝑊)) → (𝐴(·if‘𝑊)𝐵) = (𝐴 , 𝐵)) |
32 | 20, 28, 31 | syl2anc 583 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → (𝐴(·if‘𝑊)𝐵) = (𝐴 , 𝐵)) |
33 | 32 | 3impa 1108 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → (𝐴(·if‘𝑊)𝐵) = (𝐴 , 𝐵)) |
34 | 33 | mpoeq3dva 7330 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴(·if‘𝑊)𝐵)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 , 𝐵))) |
35 | cnmpt1ip.c | . . . . 5 ⊢ 𝐶 = (TopOpen‘ℂfld) | |
36 | 30, 10, 35 | ipcn 24315 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → (·if‘𝑊) ∈ ((𝐽 ×t 𝐽) Cn 𝐶)) |
37 | 5, 36 | syl 17 | . . 3 ⊢ (𝜑 → (·if‘𝑊) ∈ ((𝐽 ×t 𝐽) Cn 𝐶)) |
38 | 1, 2, 13, 21, 37 | cnmpt22f 22734 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴(·if‘𝑊)𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐶)) |
39 | 34, 38 | eqeltrrd 2840 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 , 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 × cxp 5578 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 Basecbs 16840 ·𝑖cip 16893 TopOpenctopn 17049 ℂfldccnfld 20510 ·ifcipf 20742 TopOnctopon 21967 TopSpctps 21989 Cn ccn 22283 ×t ctx 22619 NrmGrpcngp 23639 ℂPreHilccph 24235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-rnghom 19874 df-drng 19908 df-subrg 19937 df-staf 20020 df-srng 20021 df-lmod 20040 df-lmhm 20199 df-lvec 20280 df-sra 20349 df-rgmod 20350 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-phl 20743 df-ipf 20744 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cn 22286 df-cnp 22287 df-tx 22621 df-hmeo 22814 df-xms 23381 df-ms 23382 df-tms 23383 df-nm 23644 df-ngp 23645 df-tng 23646 df-nlm 23648 df-clm 24132 df-cph 24237 df-tcph 24238 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |