MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2ip Structured version   Visualization version   GIF version

Theorem cnmpt2ip 24612
Description: Continuity of inner product; analogue of cnmpt22f 23026 which cannot be used directly because ·𝑖 is not a function. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cnmpt1ip.j 𝐽 = (TopOpen‘𝑊)
cnmpt1ip.c 𝐶 = (TopOpen‘ℂfld)
cnmpt1ip.h , = (·𝑖𝑊)
cnmpt1ip.r (𝜑𝑊 ∈ ℂPreHil)
cnmpt1ip.k (𝜑𝐾 ∈ (TopOn‘𝑋))
cnmpt2ip.l (𝜑𝐿 ∈ (TopOn‘𝑌))
cnmpt2ip.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
cnmpt2ip.b (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
Assertion
Ref Expression
cnmpt2ip (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 , 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐶))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐽,𝑦   𝑥,𝐾   𝜑,𝑥,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   , (𝑥,𝑦)   𝐾(𝑦)   𝐿(𝑥,𝑦)

Proof of Theorem cnmpt2ip
StepHypRef Expression
1 cnmpt1ip.k . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘𝑋))
2 cnmpt2ip.l . . . . . . . . . 10 (𝜑𝐿 ∈ (TopOn‘𝑌))
3 txtopon 22942 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)))
41, 2, 3syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)))
5 cnmpt1ip.r . . . . . . . . . . 11 (𝜑𝑊 ∈ ℂPreHil)
6 cphngp 24537 . . . . . . . . . . 11 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
7 ngptps 23958 . . . . . . . . . . 11 (𝑊 ∈ NrmGrp → 𝑊 ∈ TopSp)
85, 6, 73syl 18 . . . . . . . . . 10 (𝜑𝑊 ∈ TopSp)
9 eqid 2736 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
10 cnmpt1ip.j . . . . . . . . . . 11 𝐽 = (TopOpen‘𝑊)
119, 10istps 22283 . . . . . . . . . 10 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑊)))
128, 11sylib 217 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘(Base‘𝑊)))
13 cnmpt2ip.a . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
14 cnf2 22600 . . . . . . . . 9 (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝑊))
154, 12, 13, 14syl3anc 1371 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝑊))
16 eqid 2736 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐴) = (𝑥𝑋, 𝑦𝑌𝐴)
1716fmpo 8000 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐴 ∈ (Base‘𝑊) ↔ (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝑊))
1815, 17sylibr 233 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐴 ∈ (Base‘𝑊))
1918r19.21bi 3234 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐴 ∈ (Base‘𝑊))
2019r19.21bi 3234 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐴 ∈ (Base‘𝑊))
21 cnmpt2ip.b . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
22 cnf2 22600 . . . . . . . . 9 (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊))
234, 12, 21, 22syl3anc 1371 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊))
24 eqid 2736 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐵) = (𝑥𝑋, 𝑦𝑌𝐵)
2524fmpo 8000 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐵 ∈ (Base‘𝑊) ↔ (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊))
2623, 25sylibr 233 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐵 ∈ (Base‘𝑊))
2726r19.21bi 3234 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐵 ∈ (Base‘𝑊))
2827r19.21bi 3234 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐵 ∈ (Base‘𝑊))
29 cnmpt1ip.h . . . . . 6 , = (·𝑖𝑊)
30 eqid 2736 . . . . . 6 (·if𝑊) = (·if𝑊)
319, 29, 30ipfval 21053 . . . . 5 ((𝐴 ∈ (Base‘𝑊) ∧ 𝐵 ∈ (Base‘𝑊)) → (𝐴(·if𝑊)𝐵) = (𝐴 , 𝐵))
3220, 28, 31syl2anc 584 . . . 4 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → (𝐴(·if𝑊)𝐵) = (𝐴 , 𝐵))
33323impa 1110 . . 3 ((𝜑𝑥𝑋𝑦𝑌) → (𝐴(·if𝑊)𝐵) = (𝐴 , 𝐵))
3433mpoeq3dva 7434 . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴(·if𝑊)𝐵)) = (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 , 𝐵)))
35 cnmpt1ip.c . . . . 5 𝐶 = (TopOpen‘ℂfld)
3630, 10, 35ipcn 24610 . . . 4 (𝑊 ∈ ℂPreHil → (·if𝑊) ∈ ((𝐽 ×t 𝐽) Cn 𝐶))
375, 36syl 17 . . 3 (𝜑 → (·if𝑊) ∈ ((𝐽 ×t 𝐽) Cn 𝐶))
381, 2, 13, 21, 37cnmpt22f 23026 . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴(·if𝑊)𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐶))
3934, 38eqeltrrd 2839 1 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 , 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064   × cxp 5631  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  Basecbs 17083  ·𝑖cip 17138  TopOpenctopn 17303  fldccnfld 20796  ·ifcipf 21029  TopOnctopon 22259  TopSpctps 22281   Cn ccn 22575   ×t ctx 22911  NrmGrpcngp 23933  ℂPreHilccph 24530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-subrg 20220  df-staf 20304  df-srng 20305  df-lmod 20324  df-lmhm 20483  df-lvec 20564  df-sra 20633  df-rgmod 20634  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-phl 21030  df-ipf 21031  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cn 22578  df-cnp 22579  df-tx 22913  df-hmeo 23106  df-xms 23673  df-ms 23674  df-tms 23675  df-nm 23938  df-ngp 23939  df-tng 23940  df-nlm 23942  df-clm 24426  df-cph 24532  df-tcph 24533
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator