Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnmpt2ip | Structured version Visualization version GIF version |
Description: Continuity of inner product; analogue of cnmpt22f 22826 which cannot be used directly because ·𝑖 is not a function. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cnmpt1ip.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
cnmpt1ip.c | ⊢ 𝐶 = (TopOpen‘ℂfld) |
cnmpt1ip.h | ⊢ , = (·𝑖‘𝑊) |
cnmpt1ip.r | ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) |
cnmpt1ip.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) |
cnmpt2ip.l | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) |
cnmpt2ip.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) |
cnmpt2ip.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) |
Ref | Expression |
---|---|
cnmpt2ip | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 , 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt1ip.k | . . . . . . . . . 10 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) | |
2 | cnmpt2ip.l | . . . . . . . . . 10 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) | |
3 | txtopon 22742 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌))) | |
4 | 1, 2, 3 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌))) |
5 | cnmpt1ip.r | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) | |
6 | cphngp 24337 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp) | |
7 | ngptps 23758 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ NrmGrp → 𝑊 ∈ TopSp) | |
8 | 5, 6, 7 | 3syl 18 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ TopSp) |
9 | eqid 2738 | . . . . . . . . . . 11 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
10 | cnmpt1ip.j | . . . . . . . . . . 11 ⊢ 𝐽 = (TopOpen‘𝑊) | |
11 | 9, 10 | istps 22083 | . . . . . . . . . 10 ⊢ (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑊))) |
12 | 8, 11 | sylib 217 | . . . . . . . . 9 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘(Base‘𝑊))) |
13 | cnmpt2ip.a | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) | |
14 | cnf2 22400 | . . . . . . . . 9 ⊢ (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶(Base‘𝑊)) | |
15 | 4, 12, 13, 14 | syl3anc 1370 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶(Base‘𝑊)) |
16 | eqid 2738 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) | |
17 | 16 | fmpo 7908 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴 ∈ (Base‘𝑊) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶(Base‘𝑊)) |
18 | 15, 17 | sylibr 233 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴 ∈ (Base‘𝑊)) |
19 | 18 | r19.21bi 3134 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 𝐴 ∈ (Base‘𝑊)) |
20 | 19 | r19.21bi 3134 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ (Base‘𝑊)) |
21 | cnmpt2ip.b | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) | |
22 | cnf2 22400 | . . . . . . . . 9 ⊢ (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊)) | |
23 | 4, 12, 21, 22 | syl3anc 1370 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊)) |
24 | eqid 2738 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) | |
25 | 24 | fmpo 7908 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐵 ∈ (Base‘𝑊) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊)) |
26 | 23, 25 | sylibr 233 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐵 ∈ (Base‘𝑊)) |
27 | 26 | r19.21bi 3134 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 𝐵 ∈ (Base‘𝑊)) |
28 | 27 | r19.21bi 3134 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → 𝐵 ∈ (Base‘𝑊)) |
29 | cnmpt1ip.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
30 | eqid 2738 | . . . . . 6 ⊢ (·if‘𝑊) = (·if‘𝑊) | |
31 | 9, 29, 30 | ipfval 20854 | . . . . 5 ⊢ ((𝐴 ∈ (Base‘𝑊) ∧ 𝐵 ∈ (Base‘𝑊)) → (𝐴(·if‘𝑊)𝐵) = (𝐴 , 𝐵)) |
32 | 20, 28, 31 | syl2anc 584 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → (𝐴(·if‘𝑊)𝐵) = (𝐴 , 𝐵)) |
33 | 32 | 3impa 1109 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → (𝐴(·if‘𝑊)𝐵) = (𝐴 , 𝐵)) |
34 | 33 | mpoeq3dva 7352 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴(·if‘𝑊)𝐵)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 , 𝐵))) |
35 | cnmpt1ip.c | . . . . 5 ⊢ 𝐶 = (TopOpen‘ℂfld) | |
36 | 30, 10, 35 | ipcn 24410 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → (·if‘𝑊) ∈ ((𝐽 ×t 𝐽) Cn 𝐶)) |
37 | 5, 36 | syl 17 | . . 3 ⊢ (𝜑 → (·if‘𝑊) ∈ ((𝐽 ×t 𝐽) Cn 𝐶)) |
38 | 1, 2, 13, 21, 37 | cnmpt22f 22826 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴(·if‘𝑊)𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐶)) |
39 | 34, 38 | eqeltrrd 2840 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 , 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 × cxp 5587 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 Basecbs 16912 ·𝑖cip 16967 TopOpenctopn 17132 ℂfldccnfld 20597 ·ifcipf 20830 TopOnctopon 22059 TopSpctps 22081 Cn ccn 22375 ×t ctx 22711 NrmGrpcngp 23733 ℂPreHilccph 24330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-ghm 18832 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-rnghom 19959 df-drng 19993 df-subrg 20022 df-staf 20105 df-srng 20106 df-lmod 20125 df-lmhm 20284 df-lvec 20365 df-sra 20434 df-rgmod 20435 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-cnfld 20598 df-phl 20831 df-ipf 20832 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cn 22378 df-cnp 22379 df-tx 22713 df-hmeo 22906 df-xms 23473 df-ms 23474 df-tms 23475 df-nm 23738 df-ngp 23739 df-tng 23740 df-nlm 23742 df-clm 24226 df-cph 24332 df-tcph 24333 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |