MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2ip Structured version   Visualization version   GIF version

Theorem cnmpt2ip 24746
Description: Continuity of inner product; analogue of cnmpt22f 23160 which cannot be used directly because ·𝑖 is not a function. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cnmpt1ip.j 𝐽 = (TopOpen‘𝑊)
cnmpt1ip.c 𝐶 = (TopOpen‘ℂfld)
cnmpt1ip.h , = (·𝑖𝑊)
cnmpt1ip.r (𝜑𝑊 ∈ ℂPreHil)
cnmpt1ip.k (𝜑𝐾 ∈ (TopOn‘𝑋))
cnmpt2ip.l (𝜑𝐿 ∈ (TopOn‘𝑌))
cnmpt2ip.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
cnmpt2ip.b (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
Assertion
Ref Expression
cnmpt2ip (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 , 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐶))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐽,𝑦   𝑥,𝐾   𝜑,𝑥,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   , (𝑥,𝑦)   𝐾(𝑦)   𝐿(𝑥,𝑦)

Proof of Theorem cnmpt2ip
StepHypRef Expression
1 cnmpt1ip.k . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘𝑋))
2 cnmpt2ip.l . . . . . . . . . 10 (𝜑𝐿 ∈ (TopOn‘𝑌))
3 txtopon 23076 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)))
41, 2, 3syl2anc 585 . . . . . . . . 9 (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)))
5 cnmpt1ip.r . . . . . . . . . . 11 (𝜑𝑊 ∈ ℂPreHil)
6 cphngp 24671 . . . . . . . . . . 11 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
7 ngptps 24092 . . . . . . . . . . 11 (𝑊 ∈ NrmGrp → 𝑊 ∈ TopSp)
85, 6, 73syl 18 . . . . . . . . . 10 (𝜑𝑊 ∈ TopSp)
9 eqid 2733 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
10 cnmpt1ip.j . . . . . . . . . . 11 𝐽 = (TopOpen‘𝑊)
119, 10istps 22417 . . . . . . . . . 10 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑊)))
128, 11sylib 217 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘(Base‘𝑊)))
13 cnmpt2ip.a . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
14 cnf2 22734 . . . . . . . . 9 (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝑊))
154, 12, 13, 14syl3anc 1372 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝑊))
16 eqid 2733 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐴) = (𝑥𝑋, 𝑦𝑌𝐴)
1716fmpo 8048 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐴 ∈ (Base‘𝑊) ↔ (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝑊))
1815, 17sylibr 233 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐴 ∈ (Base‘𝑊))
1918r19.21bi 3249 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐴 ∈ (Base‘𝑊))
2019r19.21bi 3249 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐴 ∈ (Base‘𝑊))
21 cnmpt2ip.b . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
22 cnf2 22734 . . . . . . . . 9 (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊))
234, 12, 21, 22syl3anc 1372 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊))
24 eqid 2733 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐵) = (𝑥𝑋, 𝑦𝑌𝐵)
2524fmpo 8048 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐵 ∈ (Base‘𝑊) ↔ (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊))
2623, 25sylibr 233 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐵 ∈ (Base‘𝑊))
2726r19.21bi 3249 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐵 ∈ (Base‘𝑊))
2827r19.21bi 3249 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐵 ∈ (Base‘𝑊))
29 cnmpt1ip.h . . . . . 6 , = (·𝑖𝑊)
30 eqid 2733 . . . . . 6 (·if𝑊) = (·if𝑊)
319, 29, 30ipfval 21185 . . . . 5 ((𝐴 ∈ (Base‘𝑊) ∧ 𝐵 ∈ (Base‘𝑊)) → (𝐴(·if𝑊)𝐵) = (𝐴 , 𝐵))
3220, 28, 31syl2anc 585 . . . 4 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → (𝐴(·if𝑊)𝐵) = (𝐴 , 𝐵))
33323impa 1111 . . 3 ((𝜑𝑥𝑋𝑦𝑌) → (𝐴(·if𝑊)𝐵) = (𝐴 , 𝐵))
3433mpoeq3dva 7480 . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴(·if𝑊)𝐵)) = (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 , 𝐵)))
35 cnmpt1ip.c . . . . 5 𝐶 = (TopOpen‘ℂfld)
3630, 10, 35ipcn 24744 . . . 4 (𝑊 ∈ ℂPreHil → (·if𝑊) ∈ ((𝐽 ×t 𝐽) Cn 𝐶))
375, 36syl 17 . . 3 (𝜑 → (·if𝑊) ∈ ((𝐽 ×t 𝐽) Cn 𝐶))
381, 2, 13, 21, 37cnmpt22f 23160 . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴(·if𝑊)𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐶))
3934, 38eqeltrrd 2835 1 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 , 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3062   × cxp 5672  wf 6535  cfv 6539  (class class class)co 7403  cmpo 7405  Basecbs 17139  ·𝑖cip 17197  TopOpenctopn 17362  fldccnfld 20928  ·ifcipf 21161  TopOnctopon 22393  TopSpctps 22415   Cn ccn 22709   ×t ctx 23045  NrmGrpcngp 24067  ℂPreHilccph 24664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183  ax-addf 11184  ax-mulf 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4907  df-int 4949  df-iun 4997  df-iin 4998  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6296  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-isom 6548  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7664  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8141  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8365  df-rdg 8404  df-1o 8460  df-2o 8461  df-er 8698  df-map 8817  df-ixp 8887  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fsupp 9357  df-fi 9401  df-sup 9432  df-inf 9433  df-oi 9500  df-card 9929  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-div 11867  df-nn 12208  df-2 12270  df-3 12271  df-4 12272  df-5 12273  df-6 12274  df-7 12275  df-8 12276  df-9 12277  df-n0 12468  df-z 12554  df-dec 12673  df-uz 12818  df-q 12928  df-rp 12970  df-xneg 13087  df-xadd 13088  df-xmul 13089  df-ico 13325  df-icc 13326  df-fz 13480  df-fzo 13623  df-seq 13962  df-exp 14023  df-hash 14286  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17075  df-sets 17092  df-slot 17110  df-ndx 17122  df-base 17140  df-ress 17169  df-plusg 17205  df-mulr 17206  df-starv 17207  df-sca 17208  df-vsca 17209  df-ip 17210  df-tset 17211  df-ple 17212  df-ds 17214  df-unif 17215  df-hom 17216  df-cco 17217  df-rest 17363  df-topn 17364  df-0g 17382  df-gsum 17383  df-topgen 17384  df-pt 17385  df-prds 17388  df-xrs 17443  df-qtop 17448  df-imas 17449  df-xps 17451  df-mre 17525  df-mrc 17526  df-acs 17528  df-mgm 18556  df-sgrp 18605  df-mnd 18621  df-mhm 18666  df-submnd 18667  df-grp 18817  df-minusg 18818  df-sbg 18819  df-mulg 18944  df-subg 18996  df-ghm 19083  df-cntz 19174  df-cmn 19642  df-abl 19643  df-mgp 19979  df-ur 19996  df-ring 20048  df-cring 20049  df-oppr 20138  df-dvdsr 20159  df-unit 20160  df-invr 20190  df-dvr 20203  df-rnghom 20239  df-drng 20305  df-subrg 20348  df-staf 20440  df-srng 20441  df-lmod 20460  df-lmhm 20620  df-lvec 20701  df-sra 20772  df-rgmod 20773  df-psmet 20920  df-xmet 20921  df-met 20922  df-bl 20923  df-mopn 20924  df-cnfld 20929  df-phl 21162  df-ipf 21163  df-top 22377  df-topon 22394  df-topsp 22416  df-bases 22430  df-cn 22712  df-cnp 22713  df-tx 23047  df-hmeo 23240  df-xms 23807  df-ms 23808  df-tms 23809  df-nm 24072  df-ngp 24073  df-tng 24074  df-nlm 24076  df-clm 24560  df-cph 24666  df-tcph 24667
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator