| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmpt2ip | Structured version Visualization version GIF version | ||
| Description: Continuity of inner product; analogue of cnmpt22f 23578 which cannot be used directly because ·𝑖 is not a function. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| cnmpt1ip.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
| cnmpt1ip.c | ⊢ 𝐶 = (TopOpen‘ℂfld) |
| cnmpt1ip.h | ⊢ , = (·𝑖‘𝑊) |
| cnmpt1ip.r | ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) |
| cnmpt1ip.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) |
| cnmpt2ip.l | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) |
| cnmpt2ip.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) |
| cnmpt2ip.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) |
| Ref | Expression |
|---|---|
| cnmpt2ip | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 , 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt1ip.k | . . . . . . . . . 10 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) | |
| 2 | cnmpt2ip.l | . . . . . . . . . 10 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) | |
| 3 | txtopon 23494 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 5 | cnmpt1ip.r | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) | |
| 6 | cphngp 25089 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp) | |
| 7 | ngptps 24506 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ NrmGrp → 𝑊 ∈ TopSp) | |
| 8 | 5, 6, 7 | 3syl 18 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ TopSp) |
| 9 | eqid 2729 | . . . . . . . . . . 11 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 10 | cnmpt1ip.j | . . . . . . . . . . 11 ⊢ 𝐽 = (TopOpen‘𝑊) | |
| 11 | 9, 10 | istps 22837 | . . . . . . . . . 10 ⊢ (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑊))) |
| 12 | 8, 11 | sylib 218 | . . . . . . . . 9 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘(Base‘𝑊))) |
| 13 | cnmpt2ip.a | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) | |
| 14 | cnf2 23152 | . . . . . . . . 9 ⊢ (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶(Base‘𝑊)) | |
| 15 | 4, 12, 13, 14 | syl3anc 1373 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶(Base‘𝑊)) |
| 16 | eqid 2729 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) | |
| 17 | 16 | fmpo 8010 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴 ∈ (Base‘𝑊) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶(Base‘𝑊)) |
| 18 | 15, 17 | sylibr 234 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴 ∈ (Base‘𝑊)) |
| 19 | 18 | r19.21bi 3221 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 𝐴 ∈ (Base‘𝑊)) |
| 20 | 19 | r19.21bi 3221 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ (Base‘𝑊)) |
| 21 | cnmpt2ip.b | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) | |
| 22 | cnf2 23152 | . . . . . . . . 9 ⊢ (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊)) | |
| 23 | 4, 12, 21, 22 | syl3anc 1373 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊)) |
| 24 | eqid 2729 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) | |
| 25 | 24 | fmpo 8010 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐵 ∈ (Base‘𝑊) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊)) |
| 26 | 23, 25 | sylibr 234 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐵 ∈ (Base‘𝑊)) |
| 27 | 26 | r19.21bi 3221 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 𝐵 ∈ (Base‘𝑊)) |
| 28 | 27 | r19.21bi 3221 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → 𝐵 ∈ (Base‘𝑊)) |
| 29 | cnmpt1ip.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
| 30 | eqid 2729 | . . . . . 6 ⊢ (·if‘𝑊) = (·if‘𝑊) | |
| 31 | 9, 29, 30 | ipfval 21574 | . . . . 5 ⊢ ((𝐴 ∈ (Base‘𝑊) ∧ 𝐵 ∈ (Base‘𝑊)) → (𝐴(·if‘𝑊)𝐵) = (𝐴 , 𝐵)) |
| 32 | 20, 28, 31 | syl2anc 584 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → (𝐴(·if‘𝑊)𝐵) = (𝐴 , 𝐵)) |
| 33 | 32 | 3impa 1109 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → (𝐴(·if‘𝑊)𝐵) = (𝐴 , 𝐵)) |
| 34 | 33 | mpoeq3dva 7430 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴(·if‘𝑊)𝐵)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 , 𝐵))) |
| 35 | cnmpt1ip.c | . . . . 5 ⊢ 𝐶 = (TopOpen‘ℂfld) | |
| 36 | 30, 10, 35 | ipcn 25162 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → (·if‘𝑊) ∈ ((𝐽 ×t 𝐽) Cn 𝐶)) |
| 37 | 5, 36 | syl 17 | . . 3 ⊢ (𝜑 → (·if‘𝑊) ∈ ((𝐽 ×t 𝐽) Cn 𝐶)) |
| 38 | 1, 2, 13, 21, 37 | cnmpt22f 23578 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴(·if‘𝑊)𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐶)) |
| 39 | 34, 38 | eqeltrrd 2829 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 , 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 × cxp 5621 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 Basecbs 17138 ·𝑖cip 17184 TopOpenctopn 17343 ℂfldccnfld 21279 ·ifcipf 21550 TopOnctopon 22813 TopSpctps 22835 Cn ccn 23127 ×t ctx 23463 NrmGrpcngp 24481 ℂPreHilccph 25082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-ghm 19110 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-rhm 20375 df-subrng 20449 df-subrg 20473 df-drng 20634 df-staf 20742 df-srng 20743 df-lmod 20783 df-lmhm 20944 df-lvec 21025 df-sra 21095 df-rgmod 21096 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-cnfld 21280 df-phl 21551 df-ipf 21552 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cn 23130 df-cnp 23131 df-tx 23465 df-hmeo 23658 df-xms 24224 df-ms 24225 df-tms 24226 df-nm 24486 df-ngp 24487 df-tng 24488 df-nlm 24490 df-clm 24979 df-cph 25084 df-tcph 25085 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |