| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmpt2ip | Structured version Visualization version GIF version | ||
| Description: Continuity of inner product; analogue of cnmpt22f 23588 which cannot be used directly because ·𝑖 is not a function. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| cnmpt1ip.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
| cnmpt1ip.c | ⊢ 𝐶 = (TopOpen‘ℂfld) |
| cnmpt1ip.h | ⊢ , = (·𝑖‘𝑊) |
| cnmpt1ip.r | ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) |
| cnmpt1ip.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) |
| cnmpt2ip.l | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) |
| cnmpt2ip.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) |
| cnmpt2ip.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) |
| Ref | Expression |
|---|---|
| cnmpt2ip | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 , 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt1ip.k | . . . . . . . . . 10 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) | |
| 2 | cnmpt2ip.l | . . . . . . . . . 10 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) | |
| 3 | txtopon 23504 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 5 | cnmpt1ip.r | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) | |
| 6 | cphngp 25098 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp) | |
| 7 | ngptps 24515 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ NrmGrp → 𝑊 ∈ TopSp) | |
| 8 | 5, 6, 7 | 3syl 18 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ TopSp) |
| 9 | eqid 2731 | . . . . . . . . . . 11 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 10 | cnmpt1ip.j | . . . . . . . . . . 11 ⊢ 𝐽 = (TopOpen‘𝑊) | |
| 11 | 9, 10 | istps 22847 | . . . . . . . . . 10 ⊢ (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑊))) |
| 12 | 8, 11 | sylib 218 | . . . . . . . . 9 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘(Base‘𝑊))) |
| 13 | cnmpt2ip.a | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) | |
| 14 | cnf2 23162 | . . . . . . . . 9 ⊢ (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶(Base‘𝑊)) | |
| 15 | 4, 12, 13, 14 | syl3anc 1373 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶(Base‘𝑊)) |
| 16 | eqid 2731 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) | |
| 17 | 16 | fmpo 8000 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴 ∈ (Base‘𝑊) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶(Base‘𝑊)) |
| 18 | 15, 17 | sylibr 234 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴 ∈ (Base‘𝑊)) |
| 19 | 18 | r19.21bi 3224 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 𝐴 ∈ (Base‘𝑊)) |
| 20 | 19 | r19.21bi 3224 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ (Base‘𝑊)) |
| 21 | cnmpt2ip.b | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) | |
| 22 | cnf2 23162 | . . . . . . . . 9 ⊢ (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊)) | |
| 23 | 4, 12, 21, 22 | syl3anc 1373 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊)) |
| 24 | eqid 2731 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) | |
| 25 | 24 | fmpo 8000 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐵 ∈ (Base‘𝑊) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊)) |
| 26 | 23, 25 | sylibr 234 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐵 ∈ (Base‘𝑊)) |
| 27 | 26 | r19.21bi 3224 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 𝐵 ∈ (Base‘𝑊)) |
| 28 | 27 | r19.21bi 3224 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → 𝐵 ∈ (Base‘𝑊)) |
| 29 | cnmpt1ip.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
| 30 | eqid 2731 | . . . . . 6 ⊢ (·if‘𝑊) = (·if‘𝑊) | |
| 31 | 9, 29, 30 | ipfval 21584 | . . . . 5 ⊢ ((𝐴 ∈ (Base‘𝑊) ∧ 𝐵 ∈ (Base‘𝑊)) → (𝐴(·if‘𝑊)𝐵) = (𝐴 , 𝐵)) |
| 32 | 20, 28, 31 | syl2anc 584 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → (𝐴(·if‘𝑊)𝐵) = (𝐴 , 𝐵)) |
| 33 | 32 | 3impa 1109 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → (𝐴(·if‘𝑊)𝐵) = (𝐴 , 𝐵)) |
| 34 | 33 | mpoeq3dva 7423 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴(·if‘𝑊)𝐵)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 , 𝐵))) |
| 35 | cnmpt1ip.c | . . . . 5 ⊢ 𝐶 = (TopOpen‘ℂfld) | |
| 36 | 30, 10, 35 | ipcn 25171 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → (·if‘𝑊) ∈ ((𝐽 ×t 𝐽) Cn 𝐶)) |
| 37 | 5, 36 | syl 17 | . . 3 ⊢ (𝜑 → (·if‘𝑊) ∈ ((𝐽 ×t 𝐽) Cn 𝐶)) |
| 38 | 1, 2, 13, 21, 37 | cnmpt22f 23588 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴(·if‘𝑊)𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐶)) |
| 39 | 34, 38 | eqeltrrd 2832 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 , 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 × cxp 5614 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 Basecbs 17117 ·𝑖cip 17163 TopOpenctopn 17322 ℂfldccnfld 21289 ·ifcipf 21560 TopOnctopon 22823 TopSpctps 22845 Cn ccn 23137 ×t ctx 23473 NrmGrpcngp 24490 ℂPreHilccph 25091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 ax-mulf 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ico 13248 df-icc 13249 df-fz 13405 df-fzo 13552 df-seq 13906 df-exp 13966 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-hom 17182 df-cco 17183 df-rest 17323 df-topn 17324 df-0g 17342 df-gsum 17343 df-topgen 17344 df-pt 17345 df-prds 17348 df-xrs 17403 df-qtop 17408 df-imas 17409 df-xps 17411 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-mulg 18978 df-subg 19033 df-ghm 19123 df-cntz 19227 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-rhm 20388 df-subrng 20459 df-subrg 20483 df-drng 20644 df-staf 20752 df-srng 20753 df-lmod 20793 df-lmhm 20954 df-lvec 21035 df-sra 21105 df-rgmod 21106 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-cnfld 21290 df-phl 21561 df-ipf 21562 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cn 23140 df-cnp 23141 df-tx 23475 df-hmeo 23668 df-xms 24233 df-ms 24234 df-tms 24235 df-nm 24495 df-ngp 24496 df-tng 24497 df-nlm 24499 df-clm 24988 df-cph 25093 df-tcph 25094 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |