Proof of Theorem nlly2i
| Step | Hyp | Ref
| Expression |
| 1 | | nllyi 23418 |
. 2
⊢ ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → ∃𝑠 ∈ ((nei‘𝐽)‘{𝑃})(𝑠 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴)) |
| 2 | | simprrl 780 |
. . 3
⊢ (((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → 𝑠 ⊆ 𝑈) |
| 3 | | velpw 4585 |
. . 3
⊢ (𝑠 ∈ 𝒫 𝑈 ↔ 𝑠 ⊆ 𝑈) |
| 4 | 2, 3 | sylibr 234 |
. 2
⊢ (((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → 𝑠 ∈ 𝒫 𝑈) |
| 5 | | simpl1 1192 |
. . . . 5
⊢ (((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → 𝐽 ∈ 𝑛-Locally 𝐴) |
| 6 | | nllytop 23416 |
. . . . 5
⊢ (𝐽 ∈ 𝑛-Locally 𝐴 → 𝐽 ∈ Top) |
| 7 | 5, 6 | syl 17 |
. . . 4
⊢ (((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → 𝐽 ∈ Top) |
| 8 | | simprl 770 |
. . . 4
⊢ (((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → 𝑠 ∈ ((nei‘𝐽)‘{𝑃})) |
| 9 | | neii2 23051 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑠 ∈ ((nei‘𝐽)‘{𝑃})) → ∃𝑢 ∈ 𝐽 ({𝑃} ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑠)) |
| 10 | 7, 8, 9 | syl2anc 584 |
. . 3
⊢ (((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → ∃𝑢 ∈ 𝐽 ({𝑃} ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑠)) |
| 11 | | simprl 770 |
. . . . . . 7
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑠)) → {𝑃} ⊆ 𝑢) |
| 12 | | simpll3 1215 |
. . . . . . . 8
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑠)) → 𝑃 ∈ 𝑈) |
| 13 | | snssg 4764 |
. . . . . . . 8
⊢ (𝑃 ∈ 𝑈 → (𝑃 ∈ 𝑢 ↔ {𝑃} ⊆ 𝑢)) |
| 14 | 12, 13 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑠)) → (𝑃 ∈ 𝑢 ↔ {𝑃} ⊆ 𝑢)) |
| 15 | 11, 14 | mpbird 257 |
. . . . . 6
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑠)) → 𝑃 ∈ 𝑢) |
| 16 | | simprr 772 |
. . . . . 6
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑠)) → 𝑢 ⊆ 𝑠) |
| 17 | | simprrr 781 |
. . . . . . 7
⊢ (((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → (𝐽 ↾t 𝑠) ∈ 𝐴) |
| 18 | 17 | adantr 480 |
. . . . . 6
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑠)) → (𝐽 ↾t 𝑠) ∈ 𝐴) |
| 19 | 15, 16, 18 | 3jca 1128 |
. . . . 5
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑠)) → (𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴)) |
| 20 | 19 | ex 412 |
. . . 4
⊢ (((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → (({𝑃} ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑠) → (𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) |
| 21 | 20 | reximdv 3156 |
. . 3
⊢ (((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → (∃𝑢 ∈ 𝐽 ({𝑃} ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑠) → ∃𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) |
| 22 | 10, 21 | mpd 15 |
. 2
⊢ (((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → ∃𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴)) |
| 23 | 1, 4, 22 | reximssdv 3159 |
1
⊢ ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → ∃𝑠 ∈ 𝒫 𝑈∃𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴)) |