MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlly2i Structured version   Visualization version   GIF version

Theorem nlly2i 23500
Description: Eliminate the neighborhood symbol from nllyi 23499. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nlly2i ((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) → ∃𝑠 ∈ 𝒫 𝑈𝑢𝐽 (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))
Distinct variable groups:   𝑢,𝑠,𝐴   𝑃,𝑠,𝑢   𝑈,𝑠,𝑢   𝐽,𝑠,𝑢

Proof of Theorem nlly2i
StepHypRef Expression
1 nllyi 23499 . 2 ((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) → ∃𝑠 ∈ ((nei‘𝐽)‘{𝑃})(𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))
2 simprrl 781 . . 3 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠𝑈)
3 velpw 4610 . . 3 (𝑠 ∈ 𝒫 𝑈𝑠𝑈)
42, 3sylibr 234 . 2 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠 ∈ 𝒫 𝑈)
5 simpl1 1190 . . . . 5 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝐽 ∈ 𝑛-Locally 𝐴)
6 nllytop 23497 . . . . 5 (𝐽 ∈ 𝑛-Locally 𝐴𝐽 ∈ Top)
75, 6syl 17 . . . 4 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝐽 ∈ Top)
8 simprl 771 . . . 4 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠 ∈ ((nei‘𝐽)‘{𝑃}))
9 neii2 23132 . . . 4 ((𝐽 ∈ Top ∧ 𝑠 ∈ ((nei‘𝐽)‘{𝑃})) → ∃𝑢𝐽 ({𝑃} ⊆ 𝑢𝑢𝑠))
107, 8, 9syl2anc 584 . . 3 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → ∃𝑢𝐽 ({𝑃} ⊆ 𝑢𝑢𝑠))
11 simprl 771 . . . . . . 7 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → {𝑃} ⊆ 𝑢)
12 simpll3 1213 . . . . . . . 8 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → 𝑃𝑈)
13 snssg 4788 . . . . . . . 8 (𝑃𝑈 → (𝑃𝑢 ↔ {𝑃} ⊆ 𝑢))
1412, 13syl 17 . . . . . . 7 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → (𝑃𝑢 ↔ {𝑃} ⊆ 𝑢))
1511, 14mpbird 257 . . . . . 6 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → 𝑃𝑢)
16 simprr 773 . . . . . 6 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → 𝑢𝑠)
17 simprrr 782 . . . . . . 7 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (𝐽t 𝑠) ∈ 𝐴)
1817adantr 480 . . . . . 6 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → (𝐽t 𝑠) ∈ 𝐴)
1915, 16, 183jca 1127 . . . . 5 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))
2019ex 412 . . . 4 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (({𝑃} ⊆ 𝑢𝑢𝑠) → (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴)))
2120reximdv 3168 . . 3 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (∃𝑢𝐽 ({𝑃} ⊆ 𝑢𝑢𝑠) → ∃𝑢𝐽 (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴)))
2210, 21mpd 15 . 2 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → ∃𝑢𝐽 (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))
231, 4, 22reximssdv 3171 1 ((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) → ∃𝑠 ∈ 𝒫 𝑈𝑢𝐽 (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2106  wrex 3068  wss 3963  𝒫 cpw 4605  {csn 4631  cfv 6563  (class class class)co 7431  t crest 17467  Topctop 22915  neicnei 23121  𝑛-Locally cnlly 23489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-top 22916  df-nei 23122  df-nlly 23491
This theorem is referenced by:  restnlly  23506  nllyrest  23510  nllyidm  23513  cldllycmp  23519  txnlly  23661  txkgen  23676  xkococnlem  23683  connpconn  35220  cvmliftmolem2  35267  cvmlift3lem8  35311
  Copyright terms: Public domain W3C validator