MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlly2i Structured version   Visualization version   GIF version

Theorem nlly2i 23363
Description: Eliminate the neighborhood symbol from nllyi 23362. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nlly2i ((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) → ∃𝑠 ∈ 𝒫 𝑈𝑢𝐽 (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))
Distinct variable groups:   𝑢,𝑠,𝐴   𝑃,𝑠,𝑢   𝑈,𝑠,𝑢   𝐽,𝑠,𝑢

Proof of Theorem nlly2i
StepHypRef Expression
1 nllyi 23362 . 2 ((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) → ∃𝑠 ∈ ((nei‘𝐽)‘{𝑃})(𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))
2 simprrl 780 . . 3 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠𝑈)
3 velpw 4568 . . 3 (𝑠 ∈ 𝒫 𝑈𝑠𝑈)
42, 3sylibr 234 . 2 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠 ∈ 𝒫 𝑈)
5 simpl1 1192 . . . . 5 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝐽 ∈ 𝑛-Locally 𝐴)
6 nllytop 23360 . . . . 5 (𝐽 ∈ 𝑛-Locally 𝐴𝐽 ∈ Top)
75, 6syl 17 . . . 4 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝐽 ∈ Top)
8 simprl 770 . . . 4 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠 ∈ ((nei‘𝐽)‘{𝑃}))
9 neii2 22995 . . . 4 ((𝐽 ∈ Top ∧ 𝑠 ∈ ((nei‘𝐽)‘{𝑃})) → ∃𝑢𝐽 ({𝑃} ⊆ 𝑢𝑢𝑠))
107, 8, 9syl2anc 584 . . 3 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → ∃𝑢𝐽 ({𝑃} ⊆ 𝑢𝑢𝑠))
11 simprl 770 . . . . . . 7 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → {𝑃} ⊆ 𝑢)
12 simpll3 1215 . . . . . . . 8 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → 𝑃𝑈)
13 snssg 4747 . . . . . . . 8 (𝑃𝑈 → (𝑃𝑢 ↔ {𝑃} ⊆ 𝑢))
1412, 13syl 17 . . . . . . 7 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → (𝑃𝑢 ↔ {𝑃} ⊆ 𝑢))
1511, 14mpbird 257 . . . . . 6 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → 𝑃𝑢)
16 simprr 772 . . . . . 6 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → 𝑢𝑠)
17 simprrr 781 . . . . . . 7 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (𝐽t 𝑠) ∈ 𝐴)
1817adantr 480 . . . . . 6 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → (𝐽t 𝑠) ∈ 𝐴)
1915, 16, 183jca 1128 . . . . 5 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))
2019ex 412 . . . 4 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (({𝑃} ⊆ 𝑢𝑢𝑠) → (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴)))
2120reximdv 3148 . . 3 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (∃𝑢𝐽 ({𝑃} ⊆ 𝑢𝑢𝑠) → ∃𝑢𝐽 (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴)))
2210, 21mpd 15 . 2 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → ∃𝑢𝐽 (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))
231, 4, 22reximssdv 3151 1 ((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) → ∃𝑠 ∈ 𝒫 𝑈𝑢𝐽 (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wrex 3053  wss 3914  𝒫 cpw 4563  {csn 4589  cfv 6511  (class class class)co 7387  t crest 17383  Topctop 22780  neicnei 22984  𝑛-Locally cnlly 23352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-top 22781  df-nei 22985  df-nlly 23354
This theorem is referenced by:  restnlly  23369  nllyrest  23373  nllyidm  23376  cldllycmp  23382  txnlly  23524  txkgen  23539  xkococnlem  23546  connpconn  35222  cvmliftmolem2  35269  cvmlift3lem8  35313
  Copyright terms: Public domain W3C validator