MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlly2i Structured version   Visualization version   GIF version

Theorem nlly2i 23485
Description: Eliminate the neighborhood symbol from nllyi 23484. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nlly2i ((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) → ∃𝑠 ∈ 𝒫 𝑈𝑢𝐽 (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))
Distinct variable groups:   𝑢,𝑠,𝐴   𝑃,𝑠,𝑢   𝑈,𝑠,𝑢   𝐽,𝑠,𝑢

Proof of Theorem nlly2i
StepHypRef Expression
1 nllyi 23484 . 2 ((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) → ∃𝑠 ∈ ((nei‘𝐽)‘{𝑃})(𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))
2 simprrl 780 . . 3 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠𝑈)
3 velpw 4604 . . 3 (𝑠 ∈ 𝒫 𝑈𝑠𝑈)
42, 3sylibr 234 . 2 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠 ∈ 𝒫 𝑈)
5 simpl1 1191 . . . . 5 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝐽 ∈ 𝑛-Locally 𝐴)
6 nllytop 23482 . . . . 5 (𝐽 ∈ 𝑛-Locally 𝐴𝐽 ∈ Top)
75, 6syl 17 . . . 4 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝐽 ∈ Top)
8 simprl 770 . . . 4 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠 ∈ ((nei‘𝐽)‘{𝑃}))
9 neii2 23117 . . . 4 ((𝐽 ∈ Top ∧ 𝑠 ∈ ((nei‘𝐽)‘{𝑃})) → ∃𝑢𝐽 ({𝑃} ⊆ 𝑢𝑢𝑠))
107, 8, 9syl2anc 584 . . 3 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → ∃𝑢𝐽 ({𝑃} ⊆ 𝑢𝑢𝑠))
11 simprl 770 . . . . . . 7 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → {𝑃} ⊆ 𝑢)
12 simpll3 1214 . . . . . . . 8 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → 𝑃𝑈)
13 snssg 4782 . . . . . . . 8 (𝑃𝑈 → (𝑃𝑢 ↔ {𝑃} ⊆ 𝑢))
1412, 13syl 17 . . . . . . 7 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → (𝑃𝑢 ↔ {𝑃} ⊆ 𝑢))
1511, 14mpbird 257 . . . . . 6 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → 𝑃𝑢)
16 simprr 772 . . . . . 6 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → 𝑢𝑠)
17 simprrr 781 . . . . . . 7 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (𝐽t 𝑠) ∈ 𝐴)
1817adantr 480 . . . . . 6 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → (𝐽t 𝑠) ∈ 𝐴)
1915, 16, 183jca 1128 . . . . 5 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))
2019ex 412 . . . 4 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (({𝑃} ⊆ 𝑢𝑢𝑠) → (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴)))
2120reximdv 3169 . . 3 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (∃𝑢𝐽 ({𝑃} ⊆ 𝑢𝑢𝑠) → ∃𝑢𝐽 (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴)))
2210, 21mpd 15 . 2 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → ∃𝑢𝐽 (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))
231, 4, 22reximssdv 3172 1 ((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) → ∃𝑠 ∈ 𝒫 𝑈𝑢𝐽 (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2107  wrex 3069  wss 3950  𝒫 cpw 4599  {csn 4625  cfv 6560  (class class class)co 7432  t crest 17466  Topctop 22900  neicnei 23106  𝑛-Locally cnlly 23474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-top 22901  df-nei 23107  df-nlly 23476
This theorem is referenced by:  restnlly  23491  nllyrest  23495  nllyidm  23498  cldllycmp  23504  txnlly  23646  txkgen  23661  xkococnlem  23668  connpconn  35241  cvmliftmolem2  35288  cvmlift3lem8  35332
  Copyright terms: Public domain W3C validator