MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llycmpkgen Structured version   Visualization version   GIF version

Theorem llycmpkgen 23495
Description: A locally compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
llycmpkgen (𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ ran 𝑘Gen)

Proof of Theorem llycmpkgen
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . 2 𝐽 = 𝐽
2 nllytop 23416 . 2 (𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ Top)
3 simpl 482 . . . 4 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 𝐽) → 𝐽 ∈ 𝑛-Locally Comp)
41topopn 22849 . . . . . 6 (𝐽 ∈ Top → 𝐽𝐽)
52, 4syl 17 . . . . 5 (𝐽 ∈ 𝑛-Locally Comp → 𝐽𝐽)
65adantr 480 . . . 4 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 𝐽) → 𝐽𝐽)
7 simpr 484 . . . 4 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 𝐽) → 𝑥 𝐽)
8 nllyi 23418 . . . 4 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐽𝐽𝑥 𝐽) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝑘 𝐽 ∧ (𝐽t 𝑘) ∈ Comp))
93, 6, 7, 8syl3anc 1373 . . 3 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 𝐽) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝑘 𝐽 ∧ (𝐽t 𝑘) ∈ Comp))
10 simpr 484 . . . 4 ((𝑘 𝐽 ∧ (𝐽t 𝑘) ∈ Comp) → (𝐽t 𝑘) ∈ Comp)
1110reximi 3075 . . 3 (∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝑘 𝐽 ∧ (𝐽t 𝑘) ∈ Comp) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽t 𝑘) ∈ Comp)
129, 11syl 17 . 2 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 𝐽) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽t 𝑘) ∈ Comp)
131, 2, 12llycmpkgen2 23493 1 (𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ ran 𝑘Gen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wrex 3061  wss 3931  {csn 4606   cuni 4888  ran crn 5660  cfv 6536  (class class class)co 7410  t crest 17439  Topctop 22836  neicnei 23040  Compccmp 23329  𝑛-Locally cnlly 23408  𝑘Genckgen 23476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-en 8965  df-fin 8968  df-fi 9428  df-rest 17441  df-topgen 17462  df-top 22837  df-topon 22854  df-bases 22889  df-ntr 22963  df-nei 23041  df-cmp 23330  df-nlly 23410  df-kgen 23477
This theorem is referenced by:  txkgen  23595
  Copyright terms: Public domain W3C validator