| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > llycmpkgen | Structured version Visualization version GIF version | ||
| Description: A locally compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| llycmpkgen | ⊢ (𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ ran 𝑘Gen) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | nllytop 23383 | . 2 ⊢ (𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ Top) | |
| 3 | simpl 482 | . . . 4 ⊢ ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 ∈ ∪ 𝐽) → 𝐽 ∈ 𝑛-Locally Comp) | |
| 4 | 1 | topopn 22816 | . . . . . 6 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
| 5 | 2, 4 | syl 17 | . . . . 5 ⊢ (𝐽 ∈ 𝑛-Locally Comp → ∪ 𝐽 ∈ 𝐽) |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 ∈ ∪ 𝐽) → ∪ 𝐽 ∈ 𝐽) |
| 7 | simpr 484 | . . . 4 ⊢ ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 ∈ ∪ 𝐽) → 𝑥 ∈ ∪ 𝐽) | |
| 8 | nllyi 23385 | . . . 4 ⊢ ((𝐽 ∈ 𝑛-Locally Comp ∧ ∪ 𝐽 ∈ 𝐽 ∧ 𝑥 ∈ ∪ 𝐽) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝑘 ⊆ ∪ 𝐽 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) | |
| 9 | 3, 6, 7, 8 | syl3anc 1373 | . . 3 ⊢ ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 ∈ ∪ 𝐽) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝑘 ⊆ ∪ 𝐽 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) |
| 10 | simpr 484 | . . . 4 ⊢ ((𝑘 ⊆ ∪ 𝐽 ∧ (𝐽 ↾t 𝑘) ∈ Comp) → (𝐽 ↾t 𝑘) ∈ Comp) | |
| 11 | 10 | reximi 3070 | . . 3 ⊢ (∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝑘 ⊆ ∪ 𝐽 ∧ (𝐽 ↾t 𝑘) ∈ Comp) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽 ↾t 𝑘) ∈ Comp) |
| 12 | 9, 11 | syl 17 | . 2 ⊢ ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 ∈ ∪ 𝐽) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽 ↾t 𝑘) ∈ Comp) |
| 13 | 1, 2, 12 | llycmpkgen2 23460 | 1 ⊢ (𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ ran 𝑘Gen) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3897 {csn 4571 ∪ cuni 4854 ran crn 5612 ‘cfv 6476 (class class class)co 7341 ↾t crest 17319 Topctop 22803 neicnei 23007 Compccmp 23296 𝑛-Locally cnlly 23375 𝑘Genckgen 23443 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-en 8865 df-fin 8868 df-fi 9290 df-rest 17321 df-topgen 17342 df-top 22804 df-topon 22821 df-bases 22856 df-ntr 22930 df-nei 23008 df-cmp 23297 df-nlly 23377 df-kgen 23444 |
| This theorem is referenced by: txkgen 23562 |
| Copyright terms: Public domain | W3C validator |