Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtbr4N Structured version   Visualization version   GIF version

Theorem cmtbr4N 37269
Description: Alternate definition for the commutes relation. (cmbr4i 29963 analog.) (Contributed by NM, 10-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtbr4.b 𝐵 = (Base‘𝐾)
cmtbr4.l = (le‘𝐾)
cmtbr4.j = (join‘𝐾)
cmtbr4.m = (meet‘𝐾)
cmtbr4.o = (oc‘𝐾)
cmtbr4.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
cmtbr4N ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 (( 𝑋) 𝑌)) 𝑌))

Proof of Theorem cmtbr4N
StepHypRef Expression
1 cmtbr4.b . . 3 𝐵 = (Base‘𝐾)
2 cmtbr4.j . . 3 = (join‘𝐾)
3 cmtbr4.m . . 3 = (meet‘𝐾)
4 cmtbr4.o . . 3 = (oc‘𝐾)
5 cmtbr4.c . . 3 𝐶 = (cm‘𝐾)
61, 2, 3, 4, 5cmtbr3N 37268 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
7 omllat 37256 . . . . 5 (𝐾 ∈ OML → 𝐾 ∈ Lat)
8 cmtbr4.l . . . . . 6 = (le‘𝐾)
91, 8, 3latmle2 18183 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑌)
107, 9syl3an1 1162 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑌)
11 breq1 5077 . . . 4 ((𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌) → ((𝑋 (( 𝑋) 𝑌)) 𝑌 ↔ (𝑋 𝑌) 𝑌))
1210, 11syl5ibrcom 246 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌) → (𝑋 (( 𝑋) 𝑌)) 𝑌))
1373ad2ant1 1132 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
14 simp2 1136 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
15 omlop 37255 . . . . . . . . . . . 12 (𝐾 ∈ OML → 𝐾 ∈ OP)
16153ad2ant1 1132 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
171, 4opoccl 37208 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
1816, 14, 17syl2anc 584 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
19 simp3 1137 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
201, 2latjcl 18157 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵𝑌𝐵) → (( 𝑋) 𝑌) ∈ 𝐵)
2113, 18, 19, 20syl3anc 1370 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) 𝑌) ∈ 𝐵)
221, 8, 3latmle1 18182 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (( 𝑋) 𝑌) ∈ 𝐵) → (𝑋 (( 𝑋) 𝑌)) 𝑋)
2313, 14, 21, 22syl3anc 1370 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (( 𝑋) 𝑌)) 𝑋)
2423anim1i 615 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 (( 𝑋) 𝑌)) 𝑌) → ((𝑋 (( 𝑋) 𝑌)) 𝑋 ∧ (𝑋 (( 𝑋) 𝑌)) 𝑌))
2524ex 413 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) 𝑌 → ((𝑋 (( 𝑋) 𝑌)) 𝑋 ∧ (𝑋 (( 𝑋) 𝑌)) 𝑌)))
261, 3latmcl 18158 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (( 𝑋) 𝑌) ∈ 𝐵) → (𝑋 (( 𝑋) 𝑌)) ∈ 𝐵)
2713, 14, 21, 26syl3anc 1370 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (( 𝑋) 𝑌)) ∈ 𝐵)
281, 8, 3latlem12 18184 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑋 (( 𝑋) 𝑌)) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑋 (( 𝑋) 𝑌)) 𝑋 ∧ (𝑋 (( 𝑋) 𝑌)) 𝑌) ↔ (𝑋 (( 𝑋) 𝑌)) (𝑋 𝑌)))
2913, 27, 14, 19, 28syl13anc 1371 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 (( 𝑋) 𝑌)) 𝑋 ∧ (𝑋 (( 𝑋) 𝑌)) 𝑌) ↔ (𝑋 (( 𝑋) 𝑌)) (𝑋 𝑌)))
3025, 29sylibd 238 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) 𝑌 → (𝑋 (( 𝑋) 𝑌)) (𝑋 𝑌)))
311, 8, 2latlej2 18167 . . . . . . 7 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵𝑌𝐵) → 𝑌 (( 𝑋) 𝑌))
3213, 18, 19, 31syl3anc 1370 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌 (( 𝑋) 𝑌))
331, 8, 3latmlem2 18188 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑌𝐵 ∧ (( 𝑋) 𝑌) ∈ 𝐵𝑋𝐵)) → (𝑌 (( 𝑋) 𝑌) → (𝑋 𝑌) (𝑋 (( 𝑋) 𝑌))))
3413, 19, 21, 14, 33syl13anc 1371 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌 (( 𝑋) 𝑌) → (𝑋 𝑌) (𝑋 (( 𝑋) 𝑌))))
3532, 34mpd 15 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) (𝑋 (( 𝑋) 𝑌)))
3630, 35jctird 527 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) 𝑌 → ((𝑋 (( 𝑋) 𝑌)) (𝑋 𝑌) ∧ (𝑋 𝑌) (𝑋 (( 𝑋) 𝑌)))))
371, 3latmcl 18158 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
387, 37syl3an1 1162 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
391, 8latasymb 18160 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 (( 𝑋) 𝑌)) ∈ 𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (((𝑋 (( 𝑋) 𝑌)) (𝑋 𝑌) ∧ (𝑋 𝑌) (𝑋 (( 𝑋) 𝑌))) ↔ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
4013, 27, 38, 39syl3anc 1370 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 (( 𝑋) 𝑌)) (𝑋 𝑌) ∧ (𝑋 𝑌) (𝑋 (( 𝑋) 𝑌))) ↔ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
4136, 40sylibd 238 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) 𝑌 → (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
4212, 41impbid 211 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌) ↔ (𝑋 (( 𝑋) 𝑌)) 𝑌))
436, 42bitrd 278 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 (( 𝑋) 𝑌)) 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  occoc 16970  joincjn 18029  meetcmee 18030  Latclat 18149  OPcops 37186  cmccmtN 37187  OMLcoml 37189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-lat 18150  df-oposet 37190  df-cmtN 37191  df-ol 37192  df-oml 37193
This theorem is referenced by:  lecmtN  37270
  Copyright terms: Public domain W3C validator