Proof of Theorem cmtbr4N
| Step | Hyp | Ref
| Expression |
| 1 | | cmtbr4.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
| 2 | | cmtbr4.j |
. . 3
⊢ ∨ =
(join‘𝐾) |
| 3 | | cmtbr4.m |
. . 3
⊢ ∧ =
(meet‘𝐾) |
| 4 | | cmtbr4.o |
. . 3
⊢ ⊥ =
(oc‘𝐾) |
| 5 | | cmtbr4.c |
. . 3
⊢ 𝐶 = (cm‘𝐾) |
| 6 | 1, 2, 3, 4, 5 | cmtbr3N 39277 |
. 2
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌))) |
| 7 | | omllat 39265 |
. . . . 5
⊢ (𝐾 ∈ OML → 𝐾 ∈ Lat) |
| 8 | | cmtbr4.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
| 9 | 1, 8, 3 | latmle2 18480 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
| 10 | 7, 9 | syl3an1 1163 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
| 11 | | breq1 5127 |
. . . 4
⊢ ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌 ↔ (𝑋 ∧ 𝑌) ≤ 𝑌)) |
| 12 | 10, 11 | syl5ibrcom 247 |
. . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌) → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌)) |
| 13 | 7 | 3ad2ant1 1133 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) |
| 14 | | simp2 1137 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
| 15 | | omlop 39264 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) |
| 16 | 15 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) |
| 17 | 1, 4 | opoccl 39217 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 18 | 16, 14, 17 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 19 | | simp3 1138 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
| 20 | 1, 2 | latjcl 18454 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ ( ⊥
‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ∨ 𝑌) ∈ 𝐵) |
| 21 | 13, 18, 19, 20 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ∨ 𝑌) ∈ 𝐵) |
| 22 | 1, 8, 3 | latmle1 18479 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (( ⊥ ‘𝑋) ∨ 𝑌) ∈ 𝐵) → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑋) |
| 23 | 13, 14, 21, 22 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑋) |
| 24 | 23 | anim1i 615 |
. . . . . . 7
⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑋 ∧ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌)) |
| 25 | 24 | ex 412 |
. . . . . 6
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌 → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑋 ∧ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌))) |
| 26 | 1, 3 | latmcl 18455 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (( ⊥ ‘𝑋) ∨ 𝑌) ∈ 𝐵) → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ∈ 𝐵) |
| 27 | 13, 14, 21, 26 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ∈ 𝐵) |
| 28 | 1, 8, 3 | latlem12 18481 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑋 ∧ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌) ↔ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ (𝑋 ∧ 𝑌))) |
| 29 | 13, 27, 14, 19, 28 | syl13anc 1374 |
. . . . . 6
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑋 ∧ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌) ↔ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ (𝑋 ∧ 𝑌))) |
| 30 | 25, 29 | sylibd 239 |
. . . . 5
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌 → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ (𝑋 ∧ 𝑌))) |
| 31 | 1, 8, 2 | latlej2 18464 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ ( ⊥
‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ (( ⊥ ‘𝑋) ∨ 𝑌)) |
| 32 | 13, 18, 19, 31 | syl3anc 1373 |
. . . . . 6
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ (( ⊥ ‘𝑋) ∨ 𝑌)) |
| 33 | 1, 8, 3 | latmlem2 18485 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑌 ∈ 𝐵 ∧ (( ⊥ ‘𝑋) ∨ 𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (𝑌 ≤ (( ⊥ ‘𝑋) ∨ 𝑌) → (𝑋 ∧ 𝑌) ≤ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)))) |
| 34 | 13, 19, 21, 14, 33 | syl13anc 1374 |
. . . . . 6
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ≤ (( ⊥ ‘𝑋) ∨ 𝑌) → (𝑋 ∧ 𝑌) ≤ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)))) |
| 35 | 32, 34 | mpd 15 |
. . . . 5
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌))) |
| 36 | 30, 35 | jctird 526 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌 → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ (𝑋 ∧ 𝑌) ∧ (𝑋 ∧ 𝑌) ≤ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌))))) |
| 37 | 1, 3 | latmcl 18455 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
| 38 | 7, 37 | syl3an1 1163 |
. . . . 5
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
| 39 | 1, 8 | latasymb 18457 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ∈ 𝐵) → (((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ (𝑋 ∧ 𝑌) ∧ (𝑋 ∧ 𝑌) ≤ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌))) ↔ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌))) |
| 40 | 13, 27, 38, 39 | syl3anc 1373 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ (𝑋 ∧ 𝑌) ∧ (𝑋 ∧ 𝑌) ≤ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌))) ↔ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌))) |
| 41 | 36, 40 | sylibd 239 |
. . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌 → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌))) |
| 42 | 12, 41 | impbid 212 |
. 2
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌) ↔ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌)) |
| 43 | 6, 42 | bitrd 279 |
1
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌)) |