Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtbr4N Structured version   Visualization version   GIF version

Theorem cmtbr4N 39211
Description: Alternate definition for the commutes relation. (cmbr4i 31633 analog.) (Contributed by NM, 10-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtbr4.b 𝐵 = (Base‘𝐾)
cmtbr4.l = (le‘𝐾)
cmtbr4.j = (join‘𝐾)
cmtbr4.m = (meet‘𝐾)
cmtbr4.o = (oc‘𝐾)
cmtbr4.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
cmtbr4N ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 (( 𝑋) 𝑌)) 𝑌))

Proof of Theorem cmtbr4N
StepHypRef Expression
1 cmtbr4.b . . 3 𝐵 = (Base‘𝐾)
2 cmtbr4.j . . 3 = (join‘𝐾)
3 cmtbr4.m . . 3 = (meet‘𝐾)
4 cmtbr4.o . . 3 = (oc‘𝐾)
5 cmtbr4.c . . 3 𝐶 = (cm‘𝐾)
61, 2, 3, 4, 5cmtbr3N 39210 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
7 omllat 39198 . . . . 5 (𝐾 ∈ OML → 𝐾 ∈ Lat)
8 cmtbr4.l . . . . . 6 = (le‘𝐾)
91, 8, 3latmle2 18535 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑌)
107, 9syl3an1 1163 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑌)
11 breq1 5169 . . . 4 ((𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌) → ((𝑋 (( 𝑋) 𝑌)) 𝑌 ↔ (𝑋 𝑌) 𝑌))
1210, 11syl5ibrcom 247 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌) → (𝑋 (( 𝑋) 𝑌)) 𝑌))
1373ad2ant1 1133 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
14 simp2 1137 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
15 omlop 39197 . . . . . . . . . . . 12 (𝐾 ∈ OML → 𝐾 ∈ OP)
16153ad2ant1 1133 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
171, 4opoccl 39150 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
1816, 14, 17syl2anc 583 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
19 simp3 1138 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
201, 2latjcl 18509 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵𝑌𝐵) → (( 𝑋) 𝑌) ∈ 𝐵)
2113, 18, 19, 20syl3anc 1371 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) 𝑌) ∈ 𝐵)
221, 8, 3latmle1 18534 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (( 𝑋) 𝑌) ∈ 𝐵) → (𝑋 (( 𝑋) 𝑌)) 𝑋)
2313, 14, 21, 22syl3anc 1371 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (( 𝑋) 𝑌)) 𝑋)
2423anim1i 614 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 (( 𝑋) 𝑌)) 𝑌) → ((𝑋 (( 𝑋) 𝑌)) 𝑋 ∧ (𝑋 (( 𝑋) 𝑌)) 𝑌))
2524ex 412 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) 𝑌 → ((𝑋 (( 𝑋) 𝑌)) 𝑋 ∧ (𝑋 (( 𝑋) 𝑌)) 𝑌)))
261, 3latmcl 18510 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (( 𝑋) 𝑌) ∈ 𝐵) → (𝑋 (( 𝑋) 𝑌)) ∈ 𝐵)
2713, 14, 21, 26syl3anc 1371 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (( 𝑋) 𝑌)) ∈ 𝐵)
281, 8, 3latlem12 18536 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑋 (( 𝑋) 𝑌)) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑋 (( 𝑋) 𝑌)) 𝑋 ∧ (𝑋 (( 𝑋) 𝑌)) 𝑌) ↔ (𝑋 (( 𝑋) 𝑌)) (𝑋 𝑌)))
2913, 27, 14, 19, 28syl13anc 1372 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 (( 𝑋) 𝑌)) 𝑋 ∧ (𝑋 (( 𝑋) 𝑌)) 𝑌) ↔ (𝑋 (( 𝑋) 𝑌)) (𝑋 𝑌)))
3025, 29sylibd 239 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) 𝑌 → (𝑋 (( 𝑋) 𝑌)) (𝑋 𝑌)))
311, 8, 2latlej2 18519 . . . . . . 7 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵𝑌𝐵) → 𝑌 (( 𝑋) 𝑌))
3213, 18, 19, 31syl3anc 1371 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌 (( 𝑋) 𝑌))
331, 8, 3latmlem2 18540 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑌𝐵 ∧ (( 𝑋) 𝑌) ∈ 𝐵𝑋𝐵)) → (𝑌 (( 𝑋) 𝑌) → (𝑋 𝑌) (𝑋 (( 𝑋) 𝑌))))
3413, 19, 21, 14, 33syl13anc 1372 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌 (( 𝑋) 𝑌) → (𝑋 𝑌) (𝑋 (( 𝑋) 𝑌))))
3532, 34mpd 15 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) (𝑋 (( 𝑋) 𝑌)))
3630, 35jctird 526 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) 𝑌 → ((𝑋 (( 𝑋) 𝑌)) (𝑋 𝑌) ∧ (𝑋 𝑌) (𝑋 (( 𝑋) 𝑌)))))
371, 3latmcl 18510 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
387, 37syl3an1 1163 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
391, 8latasymb 18512 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 (( 𝑋) 𝑌)) ∈ 𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (((𝑋 (( 𝑋) 𝑌)) (𝑋 𝑌) ∧ (𝑋 𝑌) (𝑋 (( 𝑋) 𝑌))) ↔ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
4013, 27, 38, 39syl3anc 1371 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 (( 𝑋) 𝑌)) (𝑋 𝑌) ∧ (𝑋 𝑌) (𝑋 (( 𝑋) 𝑌))) ↔ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
4136, 40sylibd 239 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) 𝑌 → (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
4212, 41impbid 212 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌) ↔ (𝑋 (( 𝑋) 𝑌)) 𝑌))
436, 42bitrd 279 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 (( 𝑋) 𝑌)) 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  occoc 17319  joincjn 18381  meetcmee 18382  Latclat 18501  OPcops 39128  cmccmtN 39129  OMLcoml 39131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-lat 18502  df-oposet 39132  df-cmtN 39133  df-ol 39134  df-oml 39135
This theorem is referenced by:  lecmtN  39212
  Copyright terms: Public domain W3C validator