Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtbr4N Structured version   Visualization version   GIF version

Theorem cmtbr4N 37196
Description: Alternate definition for the commutes relation. (cmbr4i 29864 analog.) (Contributed by NM, 10-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtbr4.b 𝐵 = (Base‘𝐾)
cmtbr4.l = (le‘𝐾)
cmtbr4.j = (join‘𝐾)
cmtbr4.m = (meet‘𝐾)
cmtbr4.o = (oc‘𝐾)
cmtbr4.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
cmtbr4N ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 (( 𝑋) 𝑌)) 𝑌))

Proof of Theorem cmtbr4N
StepHypRef Expression
1 cmtbr4.b . . 3 𝐵 = (Base‘𝐾)
2 cmtbr4.j . . 3 = (join‘𝐾)
3 cmtbr4.m . . 3 = (meet‘𝐾)
4 cmtbr4.o . . 3 = (oc‘𝐾)
5 cmtbr4.c . . 3 𝐶 = (cm‘𝐾)
61, 2, 3, 4, 5cmtbr3N 37195 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
7 omllat 37183 . . . . 5 (𝐾 ∈ OML → 𝐾 ∈ Lat)
8 cmtbr4.l . . . . . 6 = (le‘𝐾)
91, 8, 3latmle2 18098 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑌)
107, 9syl3an1 1161 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑌)
11 breq1 5073 . . . 4 ((𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌) → ((𝑋 (( 𝑋) 𝑌)) 𝑌 ↔ (𝑋 𝑌) 𝑌))
1210, 11syl5ibrcom 246 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌) → (𝑋 (( 𝑋) 𝑌)) 𝑌))
1373ad2ant1 1131 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
14 simp2 1135 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
15 omlop 37182 . . . . . . . . . . . 12 (𝐾 ∈ OML → 𝐾 ∈ OP)
16153ad2ant1 1131 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
171, 4opoccl 37135 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
1816, 14, 17syl2anc 583 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
19 simp3 1136 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
201, 2latjcl 18072 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵𝑌𝐵) → (( 𝑋) 𝑌) ∈ 𝐵)
2113, 18, 19, 20syl3anc 1369 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) 𝑌) ∈ 𝐵)
221, 8, 3latmle1 18097 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (( 𝑋) 𝑌) ∈ 𝐵) → (𝑋 (( 𝑋) 𝑌)) 𝑋)
2313, 14, 21, 22syl3anc 1369 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (( 𝑋) 𝑌)) 𝑋)
2423anim1i 614 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 (( 𝑋) 𝑌)) 𝑌) → ((𝑋 (( 𝑋) 𝑌)) 𝑋 ∧ (𝑋 (( 𝑋) 𝑌)) 𝑌))
2524ex 412 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) 𝑌 → ((𝑋 (( 𝑋) 𝑌)) 𝑋 ∧ (𝑋 (( 𝑋) 𝑌)) 𝑌)))
261, 3latmcl 18073 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (( 𝑋) 𝑌) ∈ 𝐵) → (𝑋 (( 𝑋) 𝑌)) ∈ 𝐵)
2713, 14, 21, 26syl3anc 1369 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (( 𝑋) 𝑌)) ∈ 𝐵)
281, 8, 3latlem12 18099 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑋 (( 𝑋) 𝑌)) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑋 (( 𝑋) 𝑌)) 𝑋 ∧ (𝑋 (( 𝑋) 𝑌)) 𝑌) ↔ (𝑋 (( 𝑋) 𝑌)) (𝑋 𝑌)))
2913, 27, 14, 19, 28syl13anc 1370 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 (( 𝑋) 𝑌)) 𝑋 ∧ (𝑋 (( 𝑋) 𝑌)) 𝑌) ↔ (𝑋 (( 𝑋) 𝑌)) (𝑋 𝑌)))
3025, 29sylibd 238 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) 𝑌 → (𝑋 (( 𝑋) 𝑌)) (𝑋 𝑌)))
311, 8, 2latlej2 18082 . . . . . . 7 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵𝑌𝐵) → 𝑌 (( 𝑋) 𝑌))
3213, 18, 19, 31syl3anc 1369 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌 (( 𝑋) 𝑌))
331, 8, 3latmlem2 18103 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑌𝐵 ∧ (( 𝑋) 𝑌) ∈ 𝐵𝑋𝐵)) → (𝑌 (( 𝑋) 𝑌) → (𝑋 𝑌) (𝑋 (( 𝑋) 𝑌))))
3413, 19, 21, 14, 33syl13anc 1370 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌 (( 𝑋) 𝑌) → (𝑋 𝑌) (𝑋 (( 𝑋) 𝑌))))
3532, 34mpd 15 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) (𝑋 (( 𝑋) 𝑌)))
3630, 35jctird 526 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) 𝑌 → ((𝑋 (( 𝑋) 𝑌)) (𝑋 𝑌) ∧ (𝑋 𝑌) (𝑋 (( 𝑋) 𝑌)))))
371, 3latmcl 18073 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
387, 37syl3an1 1161 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
391, 8latasymb 18075 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 (( 𝑋) 𝑌)) ∈ 𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (((𝑋 (( 𝑋) 𝑌)) (𝑋 𝑌) ∧ (𝑋 𝑌) (𝑋 (( 𝑋) 𝑌))) ↔ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
4013, 27, 38, 39syl3anc 1369 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 (( 𝑋) 𝑌)) (𝑋 𝑌) ∧ (𝑋 𝑌) (𝑋 (( 𝑋) 𝑌))) ↔ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
4136, 40sylibd 238 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) 𝑌 → (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
4212, 41impbid 211 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌) ↔ (𝑋 (( 𝑋) 𝑌)) 𝑌))
436, 42bitrd 278 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 (( 𝑋) 𝑌)) 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  occoc 16896  joincjn 17944  meetcmee 17945  Latclat 18064  OPcops 37113  cmccmtN 37114  OMLcoml 37116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-lat 18065  df-oposet 37117  df-cmtN 37118  df-ol 37119  df-oml 37120
This theorem is referenced by:  lecmtN  37197
  Copyright terms: Public domain W3C validator