Proof of Theorem cmtbr4N
Step | Hyp | Ref
| Expression |
1 | | cmtbr4.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
2 | | cmtbr4.j |
. . 3
⊢ ∨ =
(join‘𝐾) |
3 | | cmtbr4.m |
. . 3
⊢ ∧ =
(meet‘𝐾) |
4 | | cmtbr4.o |
. . 3
⊢ ⊥ =
(oc‘𝐾) |
5 | | cmtbr4.c |
. . 3
⊢ 𝐶 = (cm‘𝐾) |
6 | 1, 2, 3, 4, 5 | cmtbr3N 37195 |
. 2
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌))) |
7 | | omllat 37183 |
. . . . 5
⊢ (𝐾 ∈ OML → 𝐾 ∈ Lat) |
8 | | cmtbr4.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
9 | 1, 8, 3 | latmle2 18098 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
10 | 7, 9 | syl3an1 1161 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
11 | | breq1 5073 |
. . . 4
⊢ ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌 ↔ (𝑋 ∧ 𝑌) ≤ 𝑌)) |
12 | 10, 11 | syl5ibrcom 246 |
. . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌) → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌)) |
13 | 7 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) |
14 | | simp2 1135 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
15 | | omlop 37182 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) |
16 | 15 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) |
17 | 1, 4 | opoccl 37135 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
18 | 16, 14, 17 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
19 | | simp3 1136 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
20 | 1, 2 | latjcl 18072 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ ( ⊥
‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ∨ 𝑌) ∈ 𝐵) |
21 | 13, 18, 19, 20 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ∨ 𝑌) ∈ 𝐵) |
22 | 1, 8, 3 | latmle1 18097 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (( ⊥ ‘𝑋) ∨ 𝑌) ∈ 𝐵) → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑋) |
23 | 13, 14, 21, 22 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑋) |
24 | 23 | anim1i 614 |
. . . . . . 7
⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑋 ∧ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌)) |
25 | 24 | ex 412 |
. . . . . 6
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌 → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑋 ∧ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌))) |
26 | 1, 3 | latmcl 18073 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (( ⊥ ‘𝑋) ∨ 𝑌) ∈ 𝐵) → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ∈ 𝐵) |
27 | 13, 14, 21, 26 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ∈ 𝐵) |
28 | 1, 8, 3 | latlem12 18099 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑋 ∧ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌) ↔ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ (𝑋 ∧ 𝑌))) |
29 | 13, 27, 14, 19, 28 | syl13anc 1370 |
. . . . . 6
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑋 ∧ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌) ↔ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ (𝑋 ∧ 𝑌))) |
30 | 25, 29 | sylibd 238 |
. . . . 5
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌 → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ (𝑋 ∧ 𝑌))) |
31 | 1, 8, 2 | latlej2 18082 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ ( ⊥
‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ (( ⊥ ‘𝑋) ∨ 𝑌)) |
32 | 13, 18, 19, 31 | syl3anc 1369 |
. . . . . 6
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ (( ⊥ ‘𝑋) ∨ 𝑌)) |
33 | 1, 8, 3 | latmlem2 18103 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑌 ∈ 𝐵 ∧ (( ⊥ ‘𝑋) ∨ 𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (𝑌 ≤ (( ⊥ ‘𝑋) ∨ 𝑌) → (𝑋 ∧ 𝑌) ≤ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)))) |
34 | 13, 19, 21, 14, 33 | syl13anc 1370 |
. . . . . 6
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ≤ (( ⊥ ‘𝑋) ∨ 𝑌) → (𝑋 ∧ 𝑌) ≤ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)))) |
35 | 32, 34 | mpd 15 |
. . . . 5
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌))) |
36 | 30, 35 | jctird 526 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌 → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ (𝑋 ∧ 𝑌) ∧ (𝑋 ∧ 𝑌) ≤ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌))))) |
37 | 1, 3 | latmcl 18073 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
38 | 7, 37 | syl3an1 1161 |
. . . . 5
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
39 | 1, 8 | latasymb 18075 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ∈ 𝐵) → (((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ (𝑋 ∧ 𝑌) ∧ (𝑋 ∧ 𝑌) ≤ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌))) ↔ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌))) |
40 | 13, 27, 38, 39 | syl3anc 1369 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ (𝑋 ∧ 𝑌) ∧ (𝑋 ∧ 𝑌) ≤ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌))) ↔ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌))) |
41 | 36, 40 | sylibd 238 |
. . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌 → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌))) |
42 | 12, 41 | impbid 211 |
. 2
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌) ↔ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌)) |
43 | 6, 42 | bitrd 278 |
1
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌)) |