Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lecmtN Structured version   Visualization version   GIF version

Theorem lecmtN 39274
Description: Ordered elements commute. (lecmi 31572 analog.) (Contributed by NM, 10-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
lecmt.b 𝐵 = (Base‘𝐾)
lecmt.l = (le‘𝐾)
lecmt.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
lecmtN ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑋𝐶𝑌))

Proof of Theorem lecmtN
StepHypRef Expression
1 omllat 39260 . . . . 5 (𝐾 ∈ OML → 𝐾 ∈ Lat)
213ad2ant1 1133 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
3 simp2 1137 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
4 omlop 39259 . . . . . . 7 (𝐾 ∈ OML → 𝐾 ∈ OP)
543ad2ant1 1133 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
6 lecmt.b . . . . . . 7 𝐵 = (Base‘𝐾)
7 eqid 2730 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
86, 7opoccl 39212 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
95, 3, 8syl2anc 584 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
10 simp3 1138 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
11 eqid 2730 . . . . . 6 (join‘𝐾) = (join‘𝐾)
126, 11latjcl 18337 . . . . 5 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵)
132, 9, 10, 12syl3anc 1373 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵)
14 lecmt.l . . . . 5 = (le‘𝐾)
15 eqid 2730 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
166, 14, 15latmle1 18362 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵) → (𝑋(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) 𝑋)
172, 3, 13, 16syl3anc 1373 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) 𝑋)
186, 15latmcl 18338 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵) → (𝑋(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) ∈ 𝐵)
192, 3, 13, 18syl3anc 1373 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) ∈ 𝐵)
206, 14lattr 18342 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑋(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑋(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) 𝑋𝑋 𝑌) → (𝑋(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) 𝑌))
212, 19, 3, 10, 20syl13anc 1374 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((𝑋(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) 𝑋𝑋 𝑌) → (𝑋(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) 𝑌))
2217, 21mpand 695 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑋(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) 𝑌))
23 lecmt.c . . 3 𝐶 = (cm‘𝐾)
246, 14, 11, 15, 7, 23cmtbr4N 39273 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) 𝑌))
2522, 24sylibrd 259 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑋𝐶𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2110   class class class wbr 5089  cfv 6477  (class class class)co 7341  Basecbs 17112  lecple 17160  occoc 17161  joincjn 18209  meetcmee 18210  Latclat 18329  OPcops 39190  cmccmtN 39191  OMLcoml 39193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-proset 18192  df-poset 18211  df-lub 18242  df-glb 18243  df-join 18244  df-meet 18245  df-lat 18330  df-oposet 39194  df-cmtN 39195  df-ol 39196  df-oml 39197
This theorem is referenced by:  cmtidN  39275  omlmod1i2N  39278
  Copyright terms: Public domain W3C validator