Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lecmtN Structured version   Visualization version   GIF version

Theorem lecmtN 39361
Description: Ordered elements commute. (lecmi 31589 analog.) (Contributed by NM, 10-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
lecmt.b 𝐵 = (Base‘𝐾)
lecmt.l = (le‘𝐾)
lecmt.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
lecmtN ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑋𝐶𝑌))

Proof of Theorem lecmtN
StepHypRef Expression
1 omllat 39347 . . . . 5 (𝐾 ∈ OML → 𝐾 ∈ Lat)
213ad2ant1 1133 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
3 simp2 1137 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
4 omlop 39346 . . . . . . 7 (𝐾 ∈ OML → 𝐾 ∈ OP)
543ad2ant1 1133 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
6 lecmt.b . . . . . . 7 𝐵 = (Base‘𝐾)
7 eqid 2731 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
86, 7opoccl 39299 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
95, 3, 8syl2anc 584 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
10 simp3 1138 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
11 eqid 2731 . . . . . 6 (join‘𝐾) = (join‘𝐾)
126, 11latjcl 18351 . . . . 5 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵)
132, 9, 10, 12syl3anc 1373 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵)
14 lecmt.l . . . . 5 = (le‘𝐾)
15 eqid 2731 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
166, 14, 15latmle1 18376 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵) → (𝑋(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) 𝑋)
172, 3, 13, 16syl3anc 1373 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) 𝑋)
186, 15latmcl 18352 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵) → (𝑋(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) ∈ 𝐵)
192, 3, 13, 18syl3anc 1373 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) ∈ 𝐵)
206, 14lattr 18356 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑋(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑋(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) 𝑋𝑋 𝑌) → (𝑋(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) 𝑌))
212, 19, 3, 10, 20syl13anc 1374 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((𝑋(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) 𝑋𝑋 𝑌) → (𝑋(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) 𝑌))
2217, 21mpand 695 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑋(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) 𝑌))
23 lecmt.c . . 3 𝐶 = (cm‘𝐾)
246, 14, 11, 15, 7, 23cmtbr4N 39360 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) 𝑌))
2522, 24sylibrd 259 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑋𝐶𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5093  cfv 6487  (class class class)co 7352  Basecbs 17126  lecple 17174  occoc 17175  joincjn 18223  meetcmee 18224  Latclat 18343  OPcops 39277  cmccmtN 39278  OMLcoml 39280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-proset 18206  df-poset 18225  df-lub 18256  df-glb 18257  df-join 18258  df-meet 18259  df-lat 18344  df-oposet 39281  df-cmtN 39282  df-ol 39283  df-oml 39284
This theorem is referenced by:  cmtidN  39362  omlmod1i2N  39365
  Copyright terms: Public domain W3C validator