![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cmt3N | Structured version Visualization version GIF version |
Description: Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (cmcm4i 30835 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cmt2.b | ⊢ 𝐵 = (Base‘𝐾) |
cmt2.o | ⊢ ⊥ = (oc‘𝐾) |
cmt2.c | ⊢ 𝐶 = (cm‘𝐾) |
Ref | Expression |
---|---|
cmt3N | ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ( ⊥ ‘𝑋)𝐶𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmt2.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cmt2.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
3 | cmt2.c | . . . 4 ⊢ 𝐶 = (cm‘𝐾) | |
4 | 1, 2, 3 | cmt2N 38108 | . . 3 ⊢ ((𝐾 ∈ OML ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌𝐶𝑋 ↔ 𝑌𝐶( ⊥ ‘𝑋))) |
5 | 4 | 3com23 1126 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌𝐶𝑋 ↔ 𝑌𝐶( ⊥ ‘𝑋))) |
6 | 1, 3 | cmtcomN 38107 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑌𝐶𝑋)) |
7 | omlop 38099 | . . . . 5 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) | |
8 | 7 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) |
9 | simp2 1137 | . . . 4 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
10 | 1, 2 | opoccl 38052 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
11 | 8, 9, 10 | syl2anc 584 | . . 3 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
12 | 1, 3 | cmtcomN 38107 | . . 3 ⊢ ((𝐾 ∈ OML ∧ ( ⊥ ‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋)𝐶𝑌 ↔ 𝑌𝐶( ⊥ ‘𝑋))) |
13 | 11, 12 | syld3an2 1411 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋)𝐶𝑌 ↔ 𝑌𝐶( ⊥ ‘𝑋))) |
14 | 5, 6, 13 | 3bitr4d 310 | 1 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ( ⊥ ‘𝑋)𝐶𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 class class class wbr 5147 ‘cfv 6540 Basecbs 17140 occoc 17201 OPcops 38030 cmccmtN 38031 OMLcoml 38033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-proset 18244 df-poset 18262 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-lat 18381 df-oposet 38034 df-cmtN 38035 df-ol 38036 df-oml 38037 |
This theorem is referenced by: cmt4N 38110 omlspjN 38119 |
Copyright terms: Public domain | W3C validator |