Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmt3N Structured version   Visualization version   GIF version

Theorem cmt3N 39239
Description: Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (cmcm4i 31530 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmt2.b 𝐵 = (Base‘𝐾)
cmt2.o = (oc‘𝐾)
cmt2.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
cmt3N ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ( 𝑋)𝐶𝑌))

Proof of Theorem cmt3N
StepHypRef Expression
1 cmt2.b . . . 4 𝐵 = (Base‘𝐾)
2 cmt2.o . . . 4 = (oc‘𝐾)
3 cmt2.c . . . 4 𝐶 = (cm‘𝐾)
41, 2, 3cmt2N 39238 . . 3 ((𝐾 ∈ OML ∧ 𝑌𝐵𝑋𝐵) → (𝑌𝐶𝑋𝑌𝐶( 𝑋)))
543com23 1126 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌𝐶𝑋𝑌𝐶( 𝑋)))
61, 3cmtcomN 39237 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑌𝐶𝑋))
7 omlop 39229 . . . . 5 (𝐾 ∈ OML → 𝐾 ∈ OP)
873ad2ant1 1133 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
9 simp2 1137 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
101, 2opoccl 39182 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
118, 9, 10syl2anc 584 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
121, 3cmtcomN 39237 . . 3 ((𝐾 ∈ OML ∧ ( 𝑋) ∈ 𝐵𝑌𝐵) → (( 𝑋)𝐶𝑌𝑌𝐶( 𝑋)))
1311, 12syld3an2 1413 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋)𝐶𝑌𝑌𝐶( 𝑋)))
145, 6, 133bitr4d 311 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ( 𝑋)𝐶𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5109  cfv 6513  Basecbs 17185  occoc 17234  OPcops 39160  cmccmtN 39161  OMLcoml 39163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-proset 18261  df-poset 18280  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-lat 18397  df-oposet 39164  df-cmtN 39165  df-ol 39166  df-oml 39167
This theorem is referenced by:  cmt4N  39240  omlspjN  39249
  Copyright terms: Public domain W3C validator