![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cmt3N | Structured version Visualization version GIF version |
Description: Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (cmcm4i 31418 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cmt2.b | ⊢ 𝐵 = (Base‘𝐾) |
cmt2.o | ⊢ ⊥ = (oc‘𝐾) |
cmt2.c | ⊢ 𝐶 = (cm‘𝐾) |
Ref | Expression |
---|---|
cmt3N | ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ( ⊥ ‘𝑋)𝐶𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmt2.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cmt2.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
3 | cmt2.c | . . . 4 ⊢ 𝐶 = (cm‘𝐾) | |
4 | 1, 2, 3 | cmt2N 38722 | . . 3 ⊢ ((𝐾 ∈ OML ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌𝐶𝑋 ↔ 𝑌𝐶( ⊥ ‘𝑋))) |
5 | 4 | 3com23 1124 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌𝐶𝑋 ↔ 𝑌𝐶( ⊥ ‘𝑋))) |
6 | 1, 3 | cmtcomN 38721 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑌𝐶𝑋)) |
7 | omlop 38713 | . . . . 5 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) | |
8 | 7 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) |
9 | simp2 1135 | . . . 4 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
10 | 1, 2 | opoccl 38666 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
11 | 8, 9, 10 | syl2anc 583 | . . 3 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
12 | 1, 3 | cmtcomN 38721 | . . 3 ⊢ ((𝐾 ∈ OML ∧ ( ⊥ ‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋)𝐶𝑌 ↔ 𝑌𝐶( ⊥ ‘𝑋))) |
13 | 11, 12 | syld3an2 1409 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋)𝐶𝑌 ↔ 𝑌𝐶( ⊥ ‘𝑋))) |
14 | 5, 6, 13 | 3bitr4d 311 | 1 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ( ⊥ ‘𝑋)𝐶𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 class class class wbr 5148 ‘cfv 6548 Basecbs 17180 occoc 17241 OPcops 38644 cmccmtN 38645 OMLcoml 38647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-proset 18287 df-poset 18305 df-lub 18338 df-glb 18339 df-join 18340 df-meet 18341 df-lat 18424 df-oposet 38648 df-cmtN 38649 df-ol 38650 df-oml 38651 |
This theorem is referenced by: cmt4N 38724 omlspjN 38733 |
Copyright terms: Public domain | W3C validator |