Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmt3N Structured version   Visualization version   GIF version

Theorem cmt3N 38625
Description: Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (cmcm4i 31343 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmt2.b 𝐵 = (Base‘𝐾)
cmt2.o = (oc‘𝐾)
cmt2.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
cmt3N ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ( 𝑋)𝐶𝑌))

Proof of Theorem cmt3N
StepHypRef Expression
1 cmt2.b . . . 4 𝐵 = (Base‘𝐾)
2 cmt2.o . . . 4 = (oc‘𝐾)
3 cmt2.c . . . 4 𝐶 = (cm‘𝐾)
41, 2, 3cmt2N 38624 . . 3 ((𝐾 ∈ OML ∧ 𝑌𝐵𝑋𝐵) → (𝑌𝐶𝑋𝑌𝐶( 𝑋)))
543com23 1123 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌𝐶𝑋𝑌𝐶( 𝑋)))
61, 3cmtcomN 38623 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑌𝐶𝑋))
7 omlop 38615 . . . . 5 (𝐾 ∈ OML → 𝐾 ∈ OP)
873ad2ant1 1130 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
9 simp2 1134 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
101, 2opoccl 38568 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
118, 9, 10syl2anc 583 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
121, 3cmtcomN 38623 . . 3 ((𝐾 ∈ OML ∧ ( 𝑋) ∈ 𝐵𝑌𝐵) → (( 𝑋)𝐶𝑌𝑌𝐶( 𝑋)))
1311, 12syld3an2 1408 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋)𝐶𝑌𝑌𝐶( 𝑋)))
145, 6, 133bitr4d 311 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ( 𝑋)𝐶𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084   = wceq 1533  wcel 2098   class class class wbr 5139  cfv 6534  Basecbs 17149  occoc 17210  OPcops 38546  cmccmtN 38547  OMLcoml 38549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-proset 18256  df-poset 18274  df-lub 18307  df-glb 18308  df-join 18309  df-meet 18310  df-lat 18393  df-oposet 38550  df-cmtN 38551  df-ol 38552  df-oml 38553
This theorem is referenced by:  cmt4N  38626  omlspjN  38635
  Copyright terms: Public domain W3C validator