Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmt3N Structured version   Visualization version   GIF version

Theorem cmt3N 35060
Description: Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (cmcm4i 28794 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmt2.b 𝐵 = (Base‘𝐾)
cmt2.o = (oc‘𝐾)
cmt2.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
cmt3N ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ( 𝑋)𝐶𝑌))

Proof of Theorem cmt3N
StepHypRef Expression
1 cmt2.b . . . 4 𝐵 = (Base‘𝐾)
2 cmt2.o . . . 4 = (oc‘𝐾)
3 cmt2.c . . . 4 𝐶 = (cm‘𝐾)
41, 2, 3cmt2N 35059 . . 3 ((𝐾 ∈ OML ∧ 𝑌𝐵𝑋𝐵) → (𝑌𝐶𝑋𝑌𝐶( 𝑋)))
543com23 1120 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌𝐶𝑋𝑌𝐶( 𝑋)))
61, 3cmtcomN 35058 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑌𝐶𝑋))
7 omlop 35050 . . . . 5 (𝐾 ∈ OML → 𝐾 ∈ OP)
873ad2ant1 1127 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
9 simp2 1131 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
101, 2opoccl 35003 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
118, 9, 10syl2anc 573 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
121, 3cmtcomN 35058 . . 3 ((𝐾 ∈ OML ∧ ( 𝑋) ∈ 𝐵𝑌𝐵) → (( 𝑋)𝐶𝑌𝑌𝐶( 𝑋)))
1311, 12syld3an2 1518 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋)𝐶𝑌𝑌𝐶( 𝑋)))
145, 6, 133bitr4d 300 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ( 𝑋)𝐶𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1071   = wceq 1631  wcel 2145   class class class wbr 4786  cfv 6031  Basecbs 16064  occoc 16157  OPcops 34981  cmccmtN 34982  OMLcoml 34984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-preset 17136  df-poset 17154  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-lat 17254  df-oposet 34985  df-cmtN 34986  df-ol 34987  df-oml 34988
This theorem is referenced by:  cmt4N  35061  omlspjN  35070
  Copyright terms: Public domain W3C validator