| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cmt3N | Structured version Visualization version GIF version | ||
| Description: Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (cmcm4i 31497 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cmt2.b | ⊢ 𝐵 = (Base‘𝐾) |
| cmt2.o | ⊢ ⊥ = (oc‘𝐾) |
| cmt2.c | ⊢ 𝐶 = (cm‘𝐾) |
| Ref | Expression |
|---|---|
| cmt3N | ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ( ⊥ ‘𝑋)𝐶𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmt2.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cmt2.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
| 3 | cmt2.c | . . . 4 ⊢ 𝐶 = (cm‘𝐾) | |
| 4 | 1, 2, 3 | cmt2N 39216 | . . 3 ⊢ ((𝐾 ∈ OML ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌𝐶𝑋 ↔ 𝑌𝐶( ⊥ ‘𝑋))) |
| 5 | 4 | 3com23 1126 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌𝐶𝑋 ↔ 𝑌𝐶( ⊥ ‘𝑋))) |
| 6 | 1, 3 | cmtcomN 39215 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑌𝐶𝑋)) |
| 7 | omlop 39207 | . . . . 5 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) | |
| 8 | 7 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) |
| 9 | simp2 1137 | . . . 4 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 10 | 1, 2 | opoccl 39160 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 11 | 8, 9, 10 | syl2anc 584 | . . 3 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 12 | 1, 3 | cmtcomN 39215 | . . 3 ⊢ ((𝐾 ∈ OML ∧ ( ⊥ ‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋)𝐶𝑌 ↔ 𝑌𝐶( ⊥ ‘𝑋))) |
| 13 | 11, 12 | syld3an2 1413 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋)𝐶𝑌 ↔ 𝑌𝐶( ⊥ ‘𝑋))) |
| 14 | 5, 6, 13 | 3bitr4d 311 | 1 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ( ⊥ ‘𝑋)𝐶𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 Basecbs 17155 occoc 17204 OPcops 39138 cmccmtN 39139 OMLcoml 39141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-proset 18231 df-poset 18250 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-lat 18367 df-oposet 39142 df-cmtN 39143 df-ol 39144 df-oml 39145 |
| This theorem is referenced by: cmt4N 39218 omlspjN 39227 |
| Copyright terms: Public domain | W3C validator |