![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cmt4N | Structured version Visualization version GIF version |
Description: Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (cmcm4i 31619 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cmt2.b | ⊢ 𝐵 = (Base‘𝐾) |
cmt2.o | ⊢ ⊥ = (oc‘𝐾) |
cmt2.c | ⊢ 𝐶 = (cm‘𝐾) |
Ref | Expression |
---|---|
cmt4N | ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ( ⊥ ‘𝑋)𝐶( ⊥ ‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmt2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cmt2.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
3 | cmt2.c | . . 3 ⊢ 𝐶 = (cm‘𝐾) | |
4 | 1, 2, 3 | cmt2N 39199 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑋𝐶( ⊥ ‘𝑌))) |
5 | omlop 39190 | . . . . 5 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) | |
6 | 5 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) |
7 | simp3 1138 | . . . 4 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
8 | 1, 2 | opoccl 39143 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
9 | 6, 7, 8 | syl2anc 583 | . . 3 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
10 | 1, 2, 3 | cmt3N 39200 | . . 3 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘𝑌) ∈ 𝐵) → (𝑋𝐶( ⊥ ‘𝑌) ↔ ( ⊥ ‘𝑋)𝐶( ⊥ ‘𝑌))) |
11 | 9, 10 | syld3an3 1409 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶( ⊥ ‘𝑌) ↔ ( ⊥ ‘𝑋)𝐶( ⊥ ‘𝑌))) |
12 | 4, 11 | bitrd 279 | 1 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ( ⊥ ‘𝑋)𝐶( ⊥ ‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6568 Basecbs 17252 occoc 17313 OPcops 39121 cmccmtN 39122 OMLcoml 39124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-riota 7399 df-ov 7446 df-oprab 7447 df-proset 18359 df-poset 18377 df-lub 18410 df-glb 18411 df-join 18412 df-meet 18413 df-lat 18496 df-oposet 39125 df-cmtN 39126 df-ol 39127 df-oml 39128 |
This theorem is referenced by: cmtbr2N 39202 omlfh3N 39208 |
Copyright terms: Public domain | W3C validator |