| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cmt4N | Structured version Visualization version GIF version | ||
| Description: Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (cmcm4i 31582 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cmt2.b | ⊢ 𝐵 = (Base‘𝐾) |
| cmt2.o | ⊢ ⊥ = (oc‘𝐾) |
| cmt2.c | ⊢ 𝐶 = (cm‘𝐾) |
| Ref | Expression |
|---|---|
| cmt4N | ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ( ⊥ ‘𝑋)𝐶( ⊥ ‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmt2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cmt2.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
| 3 | cmt2.c | . . 3 ⊢ 𝐶 = (cm‘𝐾) | |
| 4 | 1, 2, 3 | cmt2N 39355 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑋𝐶( ⊥ ‘𝑌))) |
| 5 | omlop 39346 | . . . . 5 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) | |
| 6 | 5 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) |
| 7 | simp3 1138 | . . . 4 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 8 | 1, 2 | opoccl 39299 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
| 9 | 6, 7, 8 | syl2anc 584 | . . 3 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
| 10 | 1, 2, 3 | cmt3N 39356 | . . 3 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘𝑌) ∈ 𝐵) → (𝑋𝐶( ⊥ ‘𝑌) ↔ ( ⊥ ‘𝑋)𝐶( ⊥ ‘𝑌))) |
| 11 | 9, 10 | syld3an3 1411 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶( ⊥ ‘𝑌) ↔ ( ⊥ ‘𝑋)𝐶( ⊥ ‘𝑌))) |
| 12 | 4, 11 | bitrd 279 | 1 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ( ⊥ ‘𝑋)𝐶( ⊥ ‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5093 ‘cfv 6487 Basecbs 17126 occoc 17175 OPcops 39277 cmccmtN 39278 OMLcoml 39280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-proset 18206 df-poset 18225 df-lub 18256 df-glb 18257 df-join 18258 df-meet 18259 df-lat 18344 df-oposet 39281 df-cmtN 39282 df-ol 39283 df-oml 39284 |
| This theorem is referenced by: cmtbr2N 39358 omlfh3N 39364 |
| Copyright terms: Public domain | W3C validator |