| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cmt4N | Structured version Visualization version GIF version | ||
| Description: Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (cmcm4i 31565 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cmt2.b | ⊢ 𝐵 = (Base‘𝐾) |
| cmt2.o | ⊢ ⊥ = (oc‘𝐾) |
| cmt2.c | ⊢ 𝐶 = (cm‘𝐾) |
| Ref | Expression |
|---|---|
| cmt4N | ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ( ⊥ ‘𝑋)𝐶( ⊥ ‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmt2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cmt2.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
| 3 | cmt2.c | . . 3 ⊢ 𝐶 = (cm‘𝐾) | |
| 4 | 1, 2, 3 | cmt2N 39268 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑋𝐶( ⊥ ‘𝑌))) |
| 5 | omlop 39259 | . . . . 5 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) | |
| 6 | 5 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) |
| 7 | simp3 1138 | . . . 4 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 8 | 1, 2 | opoccl 39212 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
| 9 | 6, 7, 8 | syl2anc 584 | . . 3 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
| 10 | 1, 2, 3 | cmt3N 39269 | . . 3 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘𝑌) ∈ 𝐵) → (𝑋𝐶( ⊥ ‘𝑌) ↔ ( ⊥ ‘𝑋)𝐶( ⊥ ‘𝑌))) |
| 11 | 9, 10 | syld3an3 1411 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶( ⊥ ‘𝑌) ↔ ( ⊥ ‘𝑋)𝐶( ⊥ ‘𝑌))) |
| 12 | 4, 11 | bitrd 279 | 1 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ( ⊥ ‘𝑋)𝐶( ⊥ ‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 class class class wbr 5089 ‘cfv 6477 Basecbs 17112 occoc 17161 OPcops 39190 cmccmtN 39191 OMLcoml 39193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-proset 18192 df-poset 18211 df-lub 18242 df-glb 18243 df-join 18244 df-meet 18245 df-lat 18330 df-oposet 39194 df-cmtN 39195 df-ol 39196 df-oml 39197 |
| This theorem is referenced by: cmtbr2N 39271 omlfh3N 39277 |
| Copyright terms: Public domain | W3C validator |