| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cmt4N | Structured version Visualization version GIF version | ||
| Description: Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (cmcm4i 31543 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cmt2.b | ⊢ 𝐵 = (Base‘𝐾) |
| cmt2.o | ⊢ ⊥ = (oc‘𝐾) |
| cmt2.c | ⊢ 𝐶 = (cm‘𝐾) |
| Ref | Expression |
|---|---|
| cmt4N | ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ( ⊥ ‘𝑋)𝐶( ⊥ ‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmt2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cmt2.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
| 3 | cmt2.c | . . 3 ⊢ 𝐶 = (cm‘𝐾) | |
| 4 | 1, 2, 3 | cmt2N 39226 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑋𝐶( ⊥ ‘𝑌))) |
| 5 | omlop 39217 | . . . . 5 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) | |
| 6 | 5 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) |
| 7 | simp3 1138 | . . . 4 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 8 | 1, 2 | opoccl 39170 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
| 9 | 6, 7, 8 | syl2anc 584 | . . 3 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
| 10 | 1, 2, 3 | cmt3N 39227 | . . 3 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘𝑌) ∈ 𝐵) → (𝑋𝐶( ⊥ ‘𝑌) ↔ ( ⊥ ‘𝑋)𝐶( ⊥ ‘𝑌))) |
| 11 | 9, 10 | syld3an3 1410 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶( ⊥ ‘𝑌) ↔ ( ⊥ ‘𝑋)𝐶( ⊥ ‘𝑌))) |
| 12 | 4, 11 | bitrd 279 | 1 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ( ⊥ ‘𝑋)𝐶( ⊥ ‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 ‘cfv 6541 Basecbs 17230 occoc 17282 OPcops 39148 cmccmtN 39149 OMLcoml 39151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-proset 18311 df-poset 18330 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-lat 18447 df-oposet 39152 df-cmtN 39153 df-ol 39154 df-oml 39155 |
| This theorem is referenced by: cmtbr2N 39229 omlfh3N 39235 |
| Copyright terms: Public domain | W3C validator |