Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndmul Structured version   Visualization version   GIF version

Theorem omndmul 31327
Description: In a commutative ordered monoid, the ordering is compatible with group power. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
omndmul.0 𝐵 = (Base‘𝑀)
omndmul.1 = (le‘𝑀)
omndmul.2 · = (.g𝑀)
omndmul.o (𝜑𝑀 ∈ oMnd)
omndmul.c (𝜑𝑀 ∈ CMnd)
omndmul.x (𝜑𝑋𝐵)
omndmul.y (𝜑𝑌𝐵)
omndmul.n (𝜑𝑁 ∈ ℕ0)
omndmul.l (𝜑𝑋 𝑌)
Assertion
Ref Expression
omndmul (𝜑 → (𝑁 · 𝑋) (𝑁 · 𝑌))

Proof of Theorem omndmul
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omndmul.n . 2 (𝜑𝑁 ∈ ℕ0)
2 oveq1 7276 . . . 4 (𝑚 = 0 → (𝑚 · 𝑋) = (0 · 𝑋))
3 oveq1 7276 . . . 4 (𝑚 = 0 → (𝑚 · 𝑌) = (0 · 𝑌))
42, 3breq12d 5088 . . 3 (𝑚 = 0 → ((𝑚 · 𝑋) (𝑚 · 𝑌) ↔ (0 · 𝑋) (0 · 𝑌)))
5 oveq1 7276 . . . 4 (𝑚 = 𝑛 → (𝑚 · 𝑋) = (𝑛 · 𝑋))
6 oveq1 7276 . . . 4 (𝑚 = 𝑛 → (𝑚 · 𝑌) = (𝑛 · 𝑌))
75, 6breq12d 5088 . . 3 (𝑚 = 𝑛 → ((𝑚 · 𝑋) (𝑚 · 𝑌) ↔ (𝑛 · 𝑋) (𝑛 · 𝑌)))
8 oveq1 7276 . . . 4 (𝑚 = (𝑛 + 1) → (𝑚 · 𝑋) = ((𝑛 + 1) · 𝑋))
9 oveq1 7276 . . . 4 (𝑚 = (𝑛 + 1) → (𝑚 · 𝑌) = ((𝑛 + 1) · 𝑌))
108, 9breq12d 5088 . . 3 (𝑚 = (𝑛 + 1) → ((𝑚 · 𝑋) (𝑚 · 𝑌) ↔ ((𝑛 + 1) · 𝑋) ((𝑛 + 1) · 𝑌)))
11 oveq1 7276 . . . 4 (𝑚 = 𝑁 → (𝑚 · 𝑋) = (𝑁 · 𝑋))
12 oveq1 7276 . . . 4 (𝑚 = 𝑁 → (𝑚 · 𝑌) = (𝑁 · 𝑌))
1311, 12breq12d 5088 . . 3 (𝑚 = 𝑁 → ((𝑚 · 𝑋) (𝑚 · 𝑌) ↔ (𝑁 · 𝑋) (𝑁 · 𝑌)))
14 omndmul.o . . . . . 6 (𝜑𝑀 ∈ oMnd)
15 omndtos 31318 . . . . . 6 (𝑀 ∈ oMnd → 𝑀 ∈ Toset)
16 tospos 18127 . . . . . 6 (𝑀 ∈ Toset → 𝑀 ∈ Poset)
1714, 15, 163syl 18 . . . . 5 (𝜑𝑀 ∈ Poset)
18 omndmul.y . . . . . . 7 (𝜑𝑌𝐵)
19 omndmul.0 . . . . . . . 8 𝐵 = (Base‘𝑀)
20 eqid 2738 . . . . . . . 8 (0g𝑀) = (0g𝑀)
21 omndmul.2 . . . . . . . 8 · = (.g𝑀)
2219, 20, 21mulg0 18696 . . . . . . 7 (𝑌𝐵 → (0 · 𝑌) = (0g𝑀))
2318, 22syl 17 . . . . . 6 (𝜑 → (0 · 𝑌) = (0g𝑀))
24 omndmnd 31317 . . . . . . 7 (𝑀 ∈ oMnd → 𝑀 ∈ Mnd)
2519, 20mndidcl 18389 . . . . . . 7 (𝑀 ∈ Mnd → (0g𝑀) ∈ 𝐵)
2614, 24, 253syl 18 . . . . . 6 (𝜑 → (0g𝑀) ∈ 𝐵)
2723, 26eqeltrd 2839 . . . . 5 (𝜑 → (0 · 𝑌) ∈ 𝐵)
28 omndmul.1 . . . . . 6 = (le‘𝑀)
2919, 28posref 18025 . . . . 5 ((𝑀 ∈ Poset ∧ (0 · 𝑌) ∈ 𝐵) → (0 · 𝑌) (0 · 𝑌))
3017, 27, 29syl2anc 584 . . . 4 (𝜑 → (0 · 𝑌) (0 · 𝑌))
31 omndmul.x . . . . 5 (𝜑𝑋𝐵)
3219, 20, 21mulg0 18696 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝑀))
3332adantr 481 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (0 · 𝑋) = (0g𝑀))
3422adantl 482 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (0 · 𝑌) = (0g𝑀))
3533, 34eqtr4d 2781 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (0 · 𝑋) = (0 · 𝑌))
3635breq1d 5085 . . . . 5 ((𝑋𝐵𝑌𝐵) → ((0 · 𝑋) (0 · 𝑌) ↔ (0 · 𝑌) (0 · 𝑌)))
3731, 18, 36syl2anc 584 . . . 4 (𝜑 → ((0 · 𝑋) (0 · 𝑌) ↔ (0 · 𝑌) (0 · 𝑌)))
3830, 37mpbird 256 . . 3 (𝜑 → (0 · 𝑋) (0 · 𝑌))
39 eqid 2738 . . . . 5 (+g𝑀) = (+g𝑀)
4014ad2antrr 723 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑀 ∈ oMnd)
4118ad2antrr 723 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑌𝐵)
4240, 24syl 17 . . . . . 6 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑀 ∈ Mnd)
43 simplr 766 . . . . . 6 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑛 ∈ ℕ0)
4431ad2antrr 723 . . . . . 6 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑋𝐵)
4519, 21mulgnn0cl 18709 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝑋𝐵) → (𝑛 · 𝑋) ∈ 𝐵)
4642, 43, 44, 45syl3anc 1370 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → (𝑛 · 𝑋) ∈ 𝐵)
4719, 21mulgnn0cl 18709 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝑌𝐵) → (𝑛 · 𝑌) ∈ 𝐵)
4842, 43, 41, 47syl3anc 1370 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → (𝑛 · 𝑌) ∈ 𝐵)
49 simpr 485 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → (𝑛 · 𝑋) (𝑛 · 𝑌))
50 omndmul.l . . . . . 6 (𝜑𝑋 𝑌)
5150ad2antrr 723 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑋 𝑌)
52 omndmul.c . . . . . 6 (𝜑𝑀 ∈ CMnd)
5352ad2antrr 723 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑀 ∈ CMnd)
5419, 28, 39, 40, 41, 46, 44, 48, 49, 51, 53omndadd2d 31321 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → ((𝑛 · 𝑋)(+g𝑀)𝑋) ((𝑛 · 𝑌)(+g𝑀)𝑌))
5519, 21, 39mulgnn0p1 18704 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝑋𝐵) → ((𝑛 + 1) · 𝑋) = ((𝑛 · 𝑋)(+g𝑀)𝑋))
5642, 43, 44, 55syl3anc 1370 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → ((𝑛 + 1) · 𝑋) = ((𝑛 · 𝑋)(+g𝑀)𝑋))
5719, 21, 39mulgnn0p1 18704 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝑌𝐵) → ((𝑛 + 1) · 𝑌) = ((𝑛 · 𝑌)(+g𝑀)𝑌))
5842, 43, 41, 57syl3anc 1370 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → ((𝑛 + 1) · 𝑌) = ((𝑛 · 𝑌)(+g𝑀)𝑌))
5954, 56, 583brtr4d 5107 . . 3 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → ((𝑛 + 1) · 𝑋) ((𝑛 + 1) · 𝑌))
604, 7, 10, 13, 38, 59nn0indd 12406 . 2 ((𝜑𝑁 ∈ ℕ0) → (𝑁 · 𝑋) (𝑁 · 𝑌))
611, 60mpdan 684 1 (𝜑 → (𝑁 · 𝑋) (𝑁 · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5075  cfv 6428  (class class class)co 7269  0cc0 10860  1c1 10861   + caddc 10863  0cn0 12222  Basecbs 16901  +gcplusg 16951  lecple 16958  0gc0g 17139  Posetcpo 18014  Tosetctos 18123  Mndcmnd 18374  .gcmg 18689  CMndccmn 19375  oMndcomnd 31310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7580  ax-cnex 10916  ax-resscn 10917  ax-1cn 10918  ax-icn 10919  ax-addcl 10920  ax-addrcl 10921  ax-mulcl 10922  ax-mulrcl 10923  ax-mulcom 10924  ax-addass 10925  ax-mulass 10926  ax-distr 10927  ax-i2m1 10928  ax-1ne0 10929  ax-1rid 10930  ax-rnegex 10931  ax-rrecex 10932  ax-cnre 10933  ax-pre-lttri 10934  ax-pre-lttrn 10935  ax-pre-ltadd 10936  ax-pre-mulgt0 10937
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5486  df-eprel 5492  df-po 5500  df-so 5501  df-fr 5541  df-we 5543  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-pred 6197  df-ord 6264  df-on 6265  df-lim 6266  df-suc 6267  df-iota 6386  df-fun 6430  df-fn 6431  df-f 6432  df-f1 6433  df-fo 6434  df-f1o 6435  df-fv 6436  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-er 8487  df-en 8723  df-dom 8724  df-sdom 8725  df-pnf 11000  df-mnf 11001  df-xr 11002  df-ltxr 11003  df-le 11004  df-sub 11196  df-neg 11197  df-nn 11963  df-n0 12223  df-z 12309  df-uz 12572  df-fz 13229  df-seq 13711  df-0g 17141  df-proset 18002  df-poset 18020  df-toset 18124  df-mgm 18315  df-sgrp 18364  df-mnd 18375  df-mulg 18690  df-cmn 19377  df-omnd 31312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator