Step | Hyp | Ref
| Expression |
1 | | omndmul.n |
. 2
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
2 | | oveq1 7276 |
. . . 4
⊢ (𝑚 = 0 → (𝑚 · 𝑋) = (0 · 𝑋)) |
3 | | oveq1 7276 |
. . . 4
⊢ (𝑚 = 0 → (𝑚 · 𝑌) = (0 · 𝑌)) |
4 | 2, 3 | breq12d 5088 |
. . 3
⊢ (𝑚 = 0 → ((𝑚 · 𝑋) ≤ (𝑚 · 𝑌) ↔ (0 · 𝑋) ≤ (0 · 𝑌))) |
5 | | oveq1 7276 |
. . . 4
⊢ (𝑚 = 𝑛 → (𝑚 · 𝑋) = (𝑛 · 𝑋)) |
6 | | oveq1 7276 |
. . . 4
⊢ (𝑚 = 𝑛 → (𝑚 · 𝑌) = (𝑛 · 𝑌)) |
7 | 5, 6 | breq12d 5088 |
. . 3
⊢ (𝑚 = 𝑛 → ((𝑚 · 𝑋) ≤ (𝑚 · 𝑌) ↔ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌))) |
8 | | oveq1 7276 |
. . . 4
⊢ (𝑚 = (𝑛 + 1) → (𝑚 · 𝑋) = ((𝑛 + 1) · 𝑋)) |
9 | | oveq1 7276 |
. . . 4
⊢ (𝑚 = (𝑛 + 1) → (𝑚 · 𝑌) = ((𝑛 + 1) · 𝑌)) |
10 | 8, 9 | breq12d 5088 |
. . 3
⊢ (𝑚 = (𝑛 + 1) → ((𝑚 · 𝑋) ≤ (𝑚 · 𝑌) ↔ ((𝑛 + 1) · 𝑋) ≤ ((𝑛 + 1) · 𝑌))) |
11 | | oveq1 7276 |
. . . 4
⊢ (𝑚 = 𝑁 → (𝑚 · 𝑋) = (𝑁 · 𝑋)) |
12 | | oveq1 7276 |
. . . 4
⊢ (𝑚 = 𝑁 → (𝑚 · 𝑌) = (𝑁 · 𝑌)) |
13 | 11, 12 | breq12d 5088 |
. . 3
⊢ (𝑚 = 𝑁 → ((𝑚 · 𝑋) ≤ (𝑚 · 𝑌) ↔ (𝑁 · 𝑋) ≤ (𝑁 · 𝑌))) |
14 | | omndmul.o |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ oMnd) |
15 | | omndtos 31318 |
. . . . . 6
⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Toset) |
16 | | tospos 18127 |
. . . . . 6
⊢ (𝑀 ∈ Toset → 𝑀 ∈ Poset) |
17 | 14, 15, 16 | 3syl 18 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ Poset) |
18 | | omndmul.y |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
19 | | omndmul.0 |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑀) |
20 | | eqid 2738 |
. . . . . . . 8
⊢
(0g‘𝑀) = (0g‘𝑀) |
21 | | omndmul.2 |
. . . . . . . 8
⊢ · =
(.g‘𝑀) |
22 | 19, 20, 21 | mulg0 18696 |
. . . . . . 7
⊢ (𝑌 ∈ 𝐵 → (0 · 𝑌) = (0g‘𝑀)) |
23 | 18, 22 | syl 17 |
. . . . . 6
⊢ (𝜑 → (0 · 𝑌) = (0g‘𝑀)) |
24 | | omndmnd 31317 |
. . . . . . 7
⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) |
25 | 19, 20 | mndidcl 18389 |
. . . . . . 7
⊢ (𝑀 ∈ Mnd →
(0g‘𝑀)
∈ 𝐵) |
26 | 14, 24, 25 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → (0g‘𝑀) ∈ 𝐵) |
27 | 23, 26 | eqeltrd 2839 |
. . . . 5
⊢ (𝜑 → (0 · 𝑌) ∈ 𝐵) |
28 | | omndmul.1 |
. . . . . 6
⊢ ≤ =
(le‘𝑀) |
29 | 19, 28 | posref 18025 |
. . . . 5
⊢ ((𝑀 ∈ Poset ∧ (0 · 𝑌) ∈ 𝐵) → (0 · 𝑌) ≤ (0 · 𝑌)) |
30 | 17, 27, 29 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (0 · 𝑌) ≤ (0 · 𝑌)) |
31 | | omndmul.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
32 | 19, 20, 21 | mulg0 18696 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = (0g‘𝑀)) |
33 | 32 | adantr 481 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (0 · 𝑋) = (0g‘𝑀)) |
34 | 22 | adantl 482 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (0 · 𝑌) = (0g‘𝑀)) |
35 | 33, 34 | eqtr4d 2781 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (0 · 𝑋) = (0 · 𝑌)) |
36 | 35 | breq1d 5085 |
. . . . 5
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((0 · 𝑋) ≤ (0 · 𝑌) ↔ (0 · 𝑌) ≤ (0 · 𝑌))) |
37 | 31, 18, 36 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((0 · 𝑋) ≤ (0 · 𝑌) ↔ (0 · 𝑌) ≤ (0 · 𝑌))) |
38 | 30, 37 | mpbird 256 |
. . 3
⊢ (𝜑 → (0 · 𝑋) ≤ (0 · 𝑌)) |
39 | | eqid 2738 |
. . . . 5
⊢
(+g‘𝑀) = (+g‘𝑀) |
40 | 14 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → 𝑀 ∈ oMnd) |
41 | 18 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → 𝑌 ∈ 𝐵) |
42 | 40, 24 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → 𝑀 ∈ Mnd) |
43 | | simplr 766 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → 𝑛 ∈ ℕ0) |
44 | 31 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → 𝑋 ∈ 𝐵) |
45 | 19, 21 | mulgnn0cl 18709 |
. . . . . 6
⊢ ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → (𝑛 · 𝑋) ∈ 𝐵) |
46 | 42, 43, 44, 45 | syl3anc 1370 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → (𝑛 · 𝑋) ∈ 𝐵) |
47 | 19, 21 | mulgnn0cl 18709 |
. . . . . 6
⊢ ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0
∧ 𝑌 ∈ 𝐵) → (𝑛 · 𝑌) ∈ 𝐵) |
48 | 42, 43, 41, 47 | syl3anc 1370 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → (𝑛 · 𝑌) ∈ 𝐵) |
49 | | simpr 485 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) |
50 | | omndmul.l |
. . . . . 6
⊢ (𝜑 → 𝑋 ≤ 𝑌) |
51 | 50 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → 𝑋 ≤ 𝑌) |
52 | | omndmul.c |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ CMnd) |
53 | 52 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → 𝑀 ∈ CMnd) |
54 | 19, 28, 39, 40, 41, 46, 44, 48, 49, 51, 53 | omndadd2d 31321 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → ((𝑛 · 𝑋)(+g‘𝑀)𝑋) ≤ ((𝑛 · 𝑌)(+g‘𝑀)𝑌)) |
55 | 19, 21, 39 | mulgnn0p1 18704 |
. . . . 5
⊢ ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → ((𝑛 + 1) · 𝑋) = ((𝑛 · 𝑋)(+g‘𝑀)𝑋)) |
56 | 42, 43, 44, 55 | syl3anc 1370 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → ((𝑛 + 1) · 𝑋) = ((𝑛 · 𝑋)(+g‘𝑀)𝑋)) |
57 | 19, 21, 39 | mulgnn0p1 18704 |
. . . . 5
⊢ ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0
∧ 𝑌 ∈ 𝐵) → ((𝑛 + 1) · 𝑌) = ((𝑛 · 𝑌)(+g‘𝑀)𝑌)) |
58 | 42, 43, 41, 57 | syl3anc 1370 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → ((𝑛 + 1) · 𝑌) = ((𝑛 · 𝑌)(+g‘𝑀)𝑌)) |
59 | 54, 56, 58 | 3brtr4d 5107 |
. . 3
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → ((𝑛 + 1) · 𝑋) ≤ ((𝑛 + 1) · 𝑌)) |
60 | 4, 7, 10, 13, 38, 59 | nn0indd 12406 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝑁 · 𝑋) ≤ (𝑁 · 𝑌)) |
61 | 1, 60 | mpdan 684 |
1
⊢ (𝜑 → (𝑁 · 𝑋) ≤ (𝑁 · 𝑌)) |