| Step | Hyp | Ref
| Expression |
| 1 | | omndmul.n |
. 2
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 2 | | oveq1 7421 |
. . . 4
⊢ (𝑚 = 0 → (𝑚 · 𝑋) = (0 · 𝑋)) |
| 3 | | oveq1 7421 |
. . . 4
⊢ (𝑚 = 0 → (𝑚 · 𝑌) = (0 · 𝑌)) |
| 4 | 2, 3 | breq12d 5138 |
. . 3
⊢ (𝑚 = 0 → ((𝑚 · 𝑋) ≤ (𝑚 · 𝑌) ↔ (0 · 𝑋) ≤ (0 · 𝑌))) |
| 5 | | oveq1 7421 |
. . . 4
⊢ (𝑚 = 𝑛 → (𝑚 · 𝑋) = (𝑛 · 𝑋)) |
| 6 | | oveq1 7421 |
. . . 4
⊢ (𝑚 = 𝑛 → (𝑚 · 𝑌) = (𝑛 · 𝑌)) |
| 7 | 5, 6 | breq12d 5138 |
. . 3
⊢ (𝑚 = 𝑛 → ((𝑚 · 𝑋) ≤ (𝑚 · 𝑌) ↔ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌))) |
| 8 | | oveq1 7421 |
. . . 4
⊢ (𝑚 = (𝑛 + 1) → (𝑚 · 𝑋) = ((𝑛 + 1) · 𝑋)) |
| 9 | | oveq1 7421 |
. . . 4
⊢ (𝑚 = (𝑛 + 1) → (𝑚 · 𝑌) = ((𝑛 + 1) · 𝑌)) |
| 10 | 8, 9 | breq12d 5138 |
. . 3
⊢ (𝑚 = (𝑛 + 1) → ((𝑚 · 𝑋) ≤ (𝑚 · 𝑌) ↔ ((𝑛 + 1) · 𝑋) ≤ ((𝑛 + 1) · 𝑌))) |
| 11 | | oveq1 7421 |
. . . 4
⊢ (𝑚 = 𝑁 → (𝑚 · 𝑋) = (𝑁 · 𝑋)) |
| 12 | | oveq1 7421 |
. . . 4
⊢ (𝑚 = 𝑁 → (𝑚 · 𝑌) = (𝑁 · 𝑌)) |
| 13 | 11, 12 | breq12d 5138 |
. . 3
⊢ (𝑚 = 𝑁 → ((𝑚 · 𝑋) ≤ (𝑚 · 𝑌) ↔ (𝑁 · 𝑋) ≤ (𝑁 · 𝑌))) |
| 14 | | omndmul.o |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ oMnd) |
| 15 | | omndtos 33028 |
. . . . . 6
⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Toset) |
| 16 | | tospos 18439 |
. . . . . 6
⊢ (𝑀 ∈ Toset → 𝑀 ∈ Poset) |
| 17 | 14, 15, 16 | 3syl 18 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ Poset) |
| 18 | | omndmul.y |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 19 | | omndmul.0 |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑀) |
| 20 | | eqid 2734 |
. . . . . . . 8
⊢
(0g‘𝑀) = (0g‘𝑀) |
| 21 | | omndmul.2 |
. . . . . . . 8
⊢ · =
(.g‘𝑀) |
| 22 | 19, 20, 21 | mulg0 19066 |
. . . . . . 7
⊢ (𝑌 ∈ 𝐵 → (0 · 𝑌) = (0g‘𝑀)) |
| 23 | 18, 22 | syl 17 |
. . . . . 6
⊢ (𝜑 → (0 · 𝑌) = (0g‘𝑀)) |
| 24 | | omndmnd 33027 |
. . . . . . 7
⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) |
| 25 | 19, 20 | mndidcl 18736 |
. . . . . . 7
⊢ (𝑀 ∈ Mnd →
(0g‘𝑀)
∈ 𝐵) |
| 26 | 14, 24, 25 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → (0g‘𝑀) ∈ 𝐵) |
| 27 | 23, 26 | eqeltrd 2833 |
. . . . 5
⊢ (𝜑 → (0 · 𝑌) ∈ 𝐵) |
| 28 | | omndmul.1 |
. . . . . 6
⊢ ≤ =
(le‘𝑀) |
| 29 | 19, 28 | posref 18339 |
. . . . 5
⊢ ((𝑀 ∈ Poset ∧ (0 · 𝑌) ∈ 𝐵) → (0 · 𝑌) ≤ (0 · 𝑌)) |
| 30 | 17, 27, 29 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (0 · 𝑌) ≤ (0 · 𝑌)) |
| 31 | | omndmul.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 32 | 19, 20, 21 | mulg0 19066 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = (0g‘𝑀)) |
| 33 | 32 | adantr 480 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (0 · 𝑋) = (0g‘𝑀)) |
| 34 | 22 | adantl 481 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (0 · 𝑌) = (0g‘𝑀)) |
| 35 | 33, 34 | eqtr4d 2772 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (0 · 𝑋) = (0 · 𝑌)) |
| 36 | 35 | breq1d 5135 |
. . . . 5
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((0 · 𝑋) ≤ (0 · 𝑌) ↔ (0 · 𝑌) ≤ (0 · 𝑌))) |
| 37 | 31, 18, 36 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((0 · 𝑋) ≤ (0 · 𝑌) ↔ (0 · 𝑌) ≤ (0 · 𝑌))) |
| 38 | 30, 37 | mpbird 257 |
. . 3
⊢ (𝜑 → (0 · 𝑋) ≤ (0 · 𝑌)) |
| 39 | | eqid 2734 |
. . . . 5
⊢
(+g‘𝑀) = (+g‘𝑀) |
| 40 | 14 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → 𝑀 ∈ oMnd) |
| 41 | 18 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → 𝑌 ∈ 𝐵) |
| 42 | 40, 24 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → 𝑀 ∈ Mnd) |
| 43 | | simplr 768 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → 𝑛 ∈ ℕ0) |
| 44 | 31 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → 𝑋 ∈ 𝐵) |
| 45 | 19, 21, 42, 43, 44 | mulgnn0cld 19087 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → (𝑛 · 𝑋) ∈ 𝐵) |
| 46 | 19, 21, 42, 43, 41 | mulgnn0cld 19087 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → (𝑛 · 𝑌) ∈ 𝐵) |
| 47 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) |
| 48 | | omndmul.l |
. . . . . 6
⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| 49 | 48 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → 𝑋 ≤ 𝑌) |
| 50 | | omndmul.c |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ CMnd) |
| 51 | 50 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → 𝑀 ∈ CMnd) |
| 52 | 19, 28, 39, 40, 41, 45, 44, 46, 47, 49, 51 | omndadd2d 33031 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → ((𝑛 · 𝑋)(+g‘𝑀)𝑋) ≤ ((𝑛 · 𝑌)(+g‘𝑀)𝑌)) |
| 53 | 19, 21, 39 | mulgnn0p1 19077 |
. . . . 5
⊢ ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → ((𝑛 + 1) · 𝑋) = ((𝑛 · 𝑋)(+g‘𝑀)𝑋)) |
| 54 | 42, 43, 44, 53 | syl3anc 1372 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → ((𝑛 + 1) · 𝑋) = ((𝑛 · 𝑋)(+g‘𝑀)𝑋)) |
| 55 | 19, 21, 39 | mulgnn0p1 19077 |
. . . . 5
⊢ ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0
∧ 𝑌 ∈ 𝐵) → ((𝑛 + 1) · 𝑌) = ((𝑛 · 𝑌)(+g‘𝑀)𝑌)) |
| 56 | 42, 43, 41, 55 | syl3anc 1372 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → ((𝑛 + 1) · 𝑌) = ((𝑛 · 𝑌)(+g‘𝑀)𝑌)) |
| 57 | 52, 54, 56 | 3brtr4d 5157 |
. . 3
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) ≤ (𝑛 · 𝑌)) → ((𝑛 + 1) · 𝑋) ≤ ((𝑛 + 1) · 𝑌)) |
| 58 | 4, 7, 10, 13, 38, 57 | nn0indd 12699 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝑁 · 𝑋) ≤ (𝑁 · 𝑌)) |
| 59 | 1, 58 | mpdan 687 |
1
⊢ (𝜑 → (𝑁 · 𝑋) ≤ (𝑁 · 𝑌)) |