MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omndmul Structured version   Visualization version   GIF version

Theorem omndmul 20040
Description: In a commutative ordered monoid, the ordering is compatible with group power. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
omndmul.0 𝐵 = (Base‘𝑀)
omndmul.1 = (le‘𝑀)
omndmul.2 · = (.g𝑀)
omndmul.o (𝜑𝑀 ∈ oMnd)
omndmul.c (𝜑𝑀 ∈ CMnd)
omndmul.x (𝜑𝑋𝐵)
omndmul.y (𝜑𝑌𝐵)
omndmul.n (𝜑𝑁 ∈ ℕ0)
omndmul.l (𝜑𝑋 𝑌)
Assertion
Ref Expression
omndmul (𝜑 → (𝑁 · 𝑋) (𝑁 · 𝑌))

Proof of Theorem omndmul
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omndmul.n . 2 (𝜑𝑁 ∈ ℕ0)
2 oveq1 7348 . . . 4 (𝑚 = 0 → (𝑚 · 𝑋) = (0 · 𝑋))
3 oveq1 7348 . . . 4 (𝑚 = 0 → (𝑚 · 𝑌) = (0 · 𝑌))
42, 3breq12d 5102 . . 3 (𝑚 = 0 → ((𝑚 · 𝑋) (𝑚 · 𝑌) ↔ (0 · 𝑋) (0 · 𝑌)))
5 oveq1 7348 . . . 4 (𝑚 = 𝑛 → (𝑚 · 𝑋) = (𝑛 · 𝑋))
6 oveq1 7348 . . . 4 (𝑚 = 𝑛 → (𝑚 · 𝑌) = (𝑛 · 𝑌))
75, 6breq12d 5102 . . 3 (𝑚 = 𝑛 → ((𝑚 · 𝑋) (𝑚 · 𝑌) ↔ (𝑛 · 𝑋) (𝑛 · 𝑌)))
8 oveq1 7348 . . . 4 (𝑚 = (𝑛 + 1) → (𝑚 · 𝑋) = ((𝑛 + 1) · 𝑋))
9 oveq1 7348 . . . 4 (𝑚 = (𝑛 + 1) → (𝑚 · 𝑌) = ((𝑛 + 1) · 𝑌))
108, 9breq12d 5102 . . 3 (𝑚 = (𝑛 + 1) → ((𝑚 · 𝑋) (𝑚 · 𝑌) ↔ ((𝑛 + 1) · 𝑋) ((𝑛 + 1) · 𝑌)))
11 oveq1 7348 . . . 4 (𝑚 = 𝑁 → (𝑚 · 𝑋) = (𝑁 · 𝑋))
12 oveq1 7348 . . . 4 (𝑚 = 𝑁 → (𝑚 · 𝑌) = (𝑁 · 𝑌))
1311, 12breq12d 5102 . . 3 (𝑚 = 𝑁 → ((𝑚 · 𝑋) (𝑚 · 𝑌) ↔ (𝑁 · 𝑋) (𝑁 · 𝑌)))
14 omndmul.o . . . . . 6 (𝜑𝑀 ∈ oMnd)
15 omndtos 20032 . . . . . 6 (𝑀 ∈ oMnd → 𝑀 ∈ Toset)
16 tospos 18316 . . . . . 6 (𝑀 ∈ Toset → 𝑀 ∈ Poset)
1714, 15, 163syl 18 . . . . 5 (𝜑𝑀 ∈ Poset)
18 omndmul.y . . . . . . 7 (𝜑𝑌𝐵)
19 omndmul.0 . . . . . . . 8 𝐵 = (Base‘𝑀)
20 eqid 2730 . . . . . . . 8 (0g𝑀) = (0g𝑀)
21 omndmul.2 . . . . . . . 8 · = (.g𝑀)
2219, 20, 21mulg0 18979 . . . . . . 7 (𝑌𝐵 → (0 · 𝑌) = (0g𝑀))
2318, 22syl 17 . . . . . 6 (𝜑 → (0 · 𝑌) = (0g𝑀))
24 omndmnd 20031 . . . . . . 7 (𝑀 ∈ oMnd → 𝑀 ∈ Mnd)
2519, 20mndidcl 18649 . . . . . . 7 (𝑀 ∈ Mnd → (0g𝑀) ∈ 𝐵)
2614, 24, 253syl 18 . . . . . 6 (𝜑 → (0g𝑀) ∈ 𝐵)
2723, 26eqeltrd 2829 . . . . 5 (𝜑 → (0 · 𝑌) ∈ 𝐵)
28 omndmul.1 . . . . . 6 = (le‘𝑀)
2919, 28posref 18216 . . . . 5 ((𝑀 ∈ Poset ∧ (0 · 𝑌) ∈ 𝐵) → (0 · 𝑌) (0 · 𝑌))
3017, 27, 29syl2anc 584 . . . 4 (𝜑 → (0 · 𝑌) (0 · 𝑌))
31 omndmul.x . . . . 5 (𝜑𝑋𝐵)
3219, 20, 21mulg0 18979 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝑀))
3332adantr 480 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (0 · 𝑋) = (0g𝑀))
3422adantl 481 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (0 · 𝑌) = (0g𝑀))
3533, 34eqtr4d 2768 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (0 · 𝑋) = (0 · 𝑌))
3635breq1d 5099 . . . . 5 ((𝑋𝐵𝑌𝐵) → ((0 · 𝑋) (0 · 𝑌) ↔ (0 · 𝑌) (0 · 𝑌)))
3731, 18, 36syl2anc 584 . . . 4 (𝜑 → ((0 · 𝑋) (0 · 𝑌) ↔ (0 · 𝑌) (0 · 𝑌)))
3830, 37mpbird 257 . . 3 (𝜑 → (0 · 𝑋) (0 · 𝑌))
39 eqid 2730 . . . . 5 (+g𝑀) = (+g𝑀)
4014ad2antrr 726 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑀 ∈ oMnd)
4118ad2antrr 726 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑌𝐵)
4240, 24syl 17 . . . . . 6 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑀 ∈ Mnd)
43 simplr 768 . . . . . 6 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑛 ∈ ℕ0)
4431ad2antrr 726 . . . . . 6 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑋𝐵)
4519, 21, 42, 43, 44mulgnn0cld 19000 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → (𝑛 · 𝑋) ∈ 𝐵)
4619, 21, 42, 43, 41mulgnn0cld 19000 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → (𝑛 · 𝑌) ∈ 𝐵)
47 simpr 484 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → (𝑛 · 𝑋) (𝑛 · 𝑌))
48 omndmul.l . . . . . 6 (𝜑𝑋 𝑌)
4948ad2antrr 726 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑋 𝑌)
50 omndmul.c . . . . . 6 (𝜑𝑀 ∈ CMnd)
5150ad2antrr 726 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑀 ∈ CMnd)
5219, 28, 39, 40, 41, 45, 44, 46, 47, 49, 51omndadd2d 20035 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → ((𝑛 · 𝑋)(+g𝑀)𝑋) ((𝑛 · 𝑌)(+g𝑀)𝑌))
5319, 21, 39mulgnn0p1 18990 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝑋𝐵) → ((𝑛 + 1) · 𝑋) = ((𝑛 · 𝑋)(+g𝑀)𝑋))
5442, 43, 44, 53syl3anc 1373 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → ((𝑛 + 1) · 𝑋) = ((𝑛 · 𝑋)(+g𝑀)𝑋))
5519, 21, 39mulgnn0p1 18990 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝑌𝐵) → ((𝑛 + 1) · 𝑌) = ((𝑛 · 𝑌)(+g𝑀)𝑌))
5642, 43, 41, 55syl3anc 1373 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → ((𝑛 + 1) · 𝑌) = ((𝑛 · 𝑌)(+g𝑀)𝑌))
5752, 54, 563brtr4d 5121 . . 3 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → ((𝑛 + 1) · 𝑋) ((𝑛 + 1) · 𝑌))
584, 7, 10, 13, 38, 57nn0indd 12562 . 2 ((𝜑𝑁 ∈ ℕ0) → (𝑁 · 𝑋) (𝑁 · 𝑌))
591, 58mpdan 687 1 (𝜑 → (𝑁 · 𝑋) (𝑁 · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110   class class class wbr 5089  cfv 6477  (class class class)co 7341  0cc0 10998  1c1 10999   + caddc 11001  0cn0 12373  Basecbs 17112  +gcplusg 17153  lecple 17160  0gc0g 17335  Posetcpo 18205  Tosetctos 18312  Mndcmnd 18634  .gcmg 18972  CMndccmn 19685  oMndcomnd 20024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-n0 12374  df-z 12461  df-uz 12725  df-fz 13400  df-seq 13901  df-0g 17337  df-proset 18192  df-poset 18211  df-toset 18313  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mulg 18973  df-cmn 19687  df-omnd 20026
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator