Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndmul Structured version   Visualization version   GIF version

Theorem omndmul 33087
Description: In a commutative ordered monoid, the ordering is compatible with group power. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
omndmul.0 𝐵 = (Base‘𝑀)
omndmul.1 = (le‘𝑀)
omndmul.2 · = (.g𝑀)
omndmul.o (𝜑𝑀 ∈ oMnd)
omndmul.c (𝜑𝑀 ∈ CMnd)
omndmul.x (𝜑𝑋𝐵)
omndmul.y (𝜑𝑌𝐵)
omndmul.n (𝜑𝑁 ∈ ℕ0)
omndmul.l (𝜑𝑋 𝑌)
Assertion
Ref Expression
omndmul (𝜑 → (𝑁 · 𝑋) (𝑁 · 𝑌))

Proof of Theorem omndmul
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omndmul.n . 2 (𝜑𝑁 ∈ ℕ0)
2 oveq1 7417 . . . 4 (𝑚 = 0 → (𝑚 · 𝑋) = (0 · 𝑋))
3 oveq1 7417 . . . 4 (𝑚 = 0 → (𝑚 · 𝑌) = (0 · 𝑌))
42, 3breq12d 5137 . . 3 (𝑚 = 0 → ((𝑚 · 𝑋) (𝑚 · 𝑌) ↔ (0 · 𝑋) (0 · 𝑌)))
5 oveq1 7417 . . . 4 (𝑚 = 𝑛 → (𝑚 · 𝑋) = (𝑛 · 𝑋))
6 oveq1 7417 . . . 4 (𝑚 = 𝑛 → (𝑚 · 𝑌) = (𝑛 · 𝑌))
75, 6breq12d 5137 . . 3 (𝑚 = 𝑛 → ((𝑚 · 𝑋) (𝑚 · 𝑌) ↔ (𝑛 · 𝑋) (𝑛 · 𝑌)))
8 oveq1 7417 . . . 4 (𝑚 = (𝑛 + 1) → (𝑚 · 𝑋) = ((𝑛 + 1) · 𝑋))
9 oveq1 7417 . . . 4 (𝑚 = (𝑛 + 1) → (𝑚 · 𝑌) = ((𝑛 + 1) · 𝑌))
108, 9breq12d 5137 . . 3 (𝑚 = (𝑛 + 1) → ((𝑚 · 𝑋) (𝑚 · 𝑌) ↔ ((𝑛 + 1) · 𝑋) ((𝑛 + 1) · 𝑌)))
11 oveq1 7417 . . . 4 (𝑚 = 𝑁 → (𝑚 · 𝑋) = (𝑁 · 𝑋))
12 oveq1 7417 . . . 4 (𝑚 = 𝑁 → (𝑚 · 𝑌) = (𝑁 · 𝑌))
1311, 12breq12d 5137 . . 3 (𝑚 = 𝑁 → ((𝑚 · 𝑋) (𝑚 · 𝑌) ↔ (𝑁 · 𝑋) (𝑁 · 𝑌)))
14 omndmul.o . . . . . 6 (𝜑𝑀 ∈ oMnd)
15 omndtos 33078 . . . . . 6 (𝑀 ∈ oMnd → 𝑀 ∈ Toset)
16 tospos 18435 . . . . . 6 (𝑀 ∈ Toset → 𝑀 ∈ Poset)
1714, 15, 163syl 18 . . . . 5 (𝜑𝑀 ∈ Poset)
18 omndmul.y . . . . . . 7 (𝜑𝑌𝐵)
19 omndmul.0 . . . . . . . 8 𝐵 = (Base‘𝑀)
20 eqid 2736 . . . . . . . 8 (0g𝑀) = (0g𝑀)
21 omndmul.2 . . . . . . . 8 · = (.g𝑀)
2219, 20, 21mulg0 19062 . . . . . . 7 (𝑌𝐵 → (0 · 𝑌) = (0g𝑀))
2318, 22syl 17 . . . . . 6 (𝜑 → (0 · 𝑌) = (0g𝑀))
24 omndmnd 33077 . . . . . . 7 (𝑀 ∈ oMnd → 𝑀 ∈ Mnd)
2519, 20mndidcl 18732 . . . . . . 7 (𝑀 ∈ Mnd → (0g𝑀) ∈ 𝐵)
2614, 24, 253syl 18 . . . . . 6 (𝜑 → (0g𝑀) ∈ 𝐵)
2723, 26eqeltrd 2835 . . . . 5 (𝜑 → (0 · 𝑌) ∈ 𝐵)
28 omndmul.1 . . . . . 6 = (le‘𝑀)
2919, 28posref 18335 . . . . 5 ((𝑀 ∈ Poset ∧ (0 · 𝑌) ∈ 𝐵) → (0 · 𝑌) (0 · 𝑌))
3017, 27, 29syl2anc 584 . . . 4 (𝜑 → (0 · 𝑌) (0 · 𝑌))
31 omndmul.x . . . . 5 (𝜑𝑋𝐵)
3219, 20, 21mulg0 19062 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝑀))
3332adantr 480 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (0 · 𝑋) = (0g𝑀))
3422adantl 481 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (0 · 𝑌) = (0g𝑀))
3533, 34eqtr4d 2774 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (0 · 𝑋) = (0 · 𝑌))
3635breq1d 5134 . . . . 5 ((𝑋𝐵𝑌𝐵) → ((0 · 𝑋) (0 · 𝑌) ↔ (0 · 𝑌) (0 · 𝑌)))
3731, 18, 36syl2anc 584 . . . 4 (𝜑 → ((0 · 𝑋) (0 · 𝑌) ↔ (0 · 𝑌) (0 · 𝑌)))
3830, 37mpbird 257 . . 3 (𝜑 → (0 · 𝑋) (0 · 𝑌))
39 eqid 2736 . . . . 5 (+g𝑀) = (+g𝑀)
4014ad2antrr 726 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑀 ∈ oMnd)
4118ad2antrr 726 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑌𝐵)
4240, 24syl 17 . . . . . 6 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑀 ∈ Mnd)
43 simplr 768 . . . . . 6 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑛 ∈ ℕ0)
4431ad2antrr 726 . . . . . 6 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑋𝐵)
4519, 21, 42, 43, 44mulgnn0cld 19083 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → (𝑛 · 𝑋) ∈ 𝐵)
4619, 21, 42, 43, 41mulgnn0cld 19083 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → (𝑛 · 𝑌) ∈ 𝐵)
47 simpr 484 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → (𝑛 · 𝑋) (𝑛 · 𝑌))
48 omndmul.l . . . . . 6 (𝜑𝑋 𝑌)
4948ad2antrr 726 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑋 𝑌)
50 omndmul.c . . . . . 6 (𝜑𝑀 ∈ CMnd)
5150ad2antrr 726 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑀 ∈ CMnd)
5219, 28, 39, 40, 41, 45, 44, 46, 47, 49, 51omndadd2d 33081 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → ((𝑛 · 𝑋)(+g𝑀)𝑋) ((𝑛 · 𝑌)(+g𝑀)𝑌))
5319, 21, 39mulgnn0p1 19073 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝑋𝐵) → ((𝑛 + 1) · 𝑋) = ((𝑛 · 𝑋)(+g𝑀)𝑋))
5442, 43, 44, 53syl3anc 1373 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → ((𝑛 + 1) · 𝑋) = ((𝑛 · 𝑋)(+g𝑀)𝑋))
5519, 21, 39mulgnn0p1 19073 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝑌𝐵) → ((𝑛 + 1) · 𝑌) = ((𝑛 · 𝑌)(+g𝑀)𝑌))
5642, 43, 41, 55syl3anc 1373 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → ((𝑛 + 1) · 𝑌) = ((𝑛 · 𝑌)(+g𝑀)𝑌))
5752, 54, 563brtr4d 5156 . . 3 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → ((𝑛 + 1) · 𝑋) ((𝑛 + 1) · 𝑌))
584, 7, 10, 13, 38, 57nn0indd 12695 . 2 ((𝜑𝑁 ∈ ℕ0) → (𝑁 · 𝑋) (𝑁 · 𝑌))
591, 58mpdan 687 1 (𝜑 → (𝑁 · 𝑋) (𝑁 · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135   + caddc 11137  0cn0 12506  Basecbs 17233  +gcplusg 17276  lecple 17283  0gc0g 17458  Posetcpo 18324  Tosetctos 18431  Mndcmnd 18717  .gcmg 19055  CMndccmn 19766  oMndcomnd 33070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-seq 14025  df-0g 17460  df-proset 18311  df-poset 18330  df-toset 18432  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mulg 19056  df-cmn 19768  df-omnd 33072
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator