Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndmul Structured version   Visualization version   GIF version

Theorem omndmul 31242
Description: In a commutative ordered monoid, the ordering is compatible with group power. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
omndmul.0 𝐵 = (Base‘𝑀)
omndmul.1 = (le‘𝑀)
omndmul.2 · = (.g𝑀)
omndmul.o (𝜑𝑀 ∈ oMnd)
omndmul.c (𝜑𝑀 ∈ CMnd)
omndmul.x (𝜑𝑋𝐵)
omndmul.y (𝜑𝑌𝐵)
omndmul.n (𝜑𝑁 ∈ ℕ0)
omndmul.l (𝜑𝑋 𝑌)
Assertion
Ref Expression
omndmul (𝜑 → (𝑁 · 𝑋) (𝑁 · 𝑌))

Proof of Theorem omndmul
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omndmul.n . 2 (𝜑𝑁 ∈ ℕ0)
2 oveq1 7262 . . . 4 (𝑚 = 0 → (𝑚 · 𝑋) = (0 · 𝑋))
3 oveq1 7262 . . . 4 (𝑚 = 0 → (𝑚 · 𝑌) = (0 · 𝑌))
42, 3breq12d 5083 . . 3 (𝑚 = 0 → ((𝑚 · 𝑋) (𝑚 · 𝑌) ↔ (0 · 𝑋) (0 · 𝑌)))
5 oveq1 7262 . . . 4 (𝑚 = 𝑛 → (𝑚 · 𝑋) = (𝑛 · 𝑋))
6 oveq1 7262 . . . 4 (𝑚 = 𝑛 → (𝑚 · 𝑌) = (𝑛 · 𝑌))
75, 6breq12d 5083 . . 3 (𝑚 = 𝑛 → ((𝑚 · 𝑋) (𝑚 · 𝑌) ↔ (𝑛 · 𝑋) (𝑛 · 𝑌)))
8 oveq1 7262 . . . 4 (𝑚 = (𝑛 + 1) → (𝑚 · 𝑋) = ((𝑛 + 1) · 𝑋))
9 oveq1 7262 . . . 4 (𝑚 = (𝑛 + 1) → (𝑚 · 𝑌) = ((𝑛 + 1) · 𝑌))
108, 9breq12d 5083 . . 3 (𝑚 = (𝑛 + 1) → ((𝑚 · 𝑋) (𝑚 · 𝑌) ↔ ((𝑛 + 1) · 𝑋) ((𝑛 + 1) · 𝑌)))
11 oveq1 7262 . . . 4 (𝑚 = 𝑁 → (𝑚 · 𝑋) = (𝑁 · 𝑋))
12 oveq1 7262 . . . 4 (𝑚 = 𝑁 → (𝑚 · 𝑌) = (𝑁 · 𝑌))
1311, 12breq12d 5083 . . 3 (𝑚 = 𝑁 → ((𝑚 · 𝑋) (𝑚 · 𝑌) ↔ (𝑁 · 𝑋) (𝑁 · 𝑌)))
14 omndmul.o . . . . . 6 (𝜑𝑀 ∈ oMnd)
15 omndtos 31233 . . . . . 6 (𝑀 ∈ oMnd → 𝑀 ∈ Toset)
16 tospos 18053 . . . . . 6 (𝑀 ∈ Toset → 𝑀 ∈ Poset)
1714, 15, 163syl 18 . . . . 5 (𝜑𝑀 ∈ Poset)
18 omndmul.y . . . . . . 7 (𝜑𝑌𝐵)
19 omndmul.0 . . . . . . . 8 𝐵 = (Base‘𝑀)
20 eqid 2738 . . . . . . . 8 (0g𝑀) = (0g𝑀)
21 omndmul.2 . . . . . . . 8 · = (.g𝑀)
2219, 20, 21mulg0 18622 . . . . . . 7 (𝑌𝐵 → (0 · 𝑌) = (0g𝑀))
2318, 22syl 17 . . . . . 6 (𝜑 → (0 · 𝑌) = (0g𝑀))
24 omndmnd 31232 . . . . . . 7 (𝑀 ∈ oMnd → 𝑀 ∈ Mnd)
2519, 20mndidcl 18315 . . . . . . 7 (𝑀 ∈ Mnd → (0g𝑀) ∈ 𝐵)
2614, 24, 253syl 18 . . . . . 6 (𝜑 → (0g𝑀) ∈ 𝐵)
2723, 26eqeltrd 2839 . . . . 5 (𝜑 → (0 · 𝑌) ∈ 𝐵)
28 omndmul.1 . . . . . 6 = (le‘𝑀)
2919, 28posref 17951 . . . . 5 ((𝑀 ∈ Poset ∧ (0 · 𝑌) ∈ 𝐵) → (0 · 𝑌) (0 · 𝑌))
3017, 27, 29syl2anc 583 . . . 4 (𝜑 → (0 · 𝑌) (0 · 𝑌))
31 omndmul.x . . . . 5 (𝜑𝑋𝐵)
3219, 20, 21mulg0 18622 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝑀))
3332adantr 480 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (0 · 𝑋) = (0g𝑀))
3422adantl 481 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (0 · 𝑌) = (0g𝑀))
3533, 34eqtr4d 2781 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (0 · 𝑋) = (0 · 𝑌))
3635breq1d 5080 . . . . 5 ((𝑋𝐵𝑌𝐵) → ((0 · 𝑋) (0 · 𝑌) ↔ (0 · 𝑌) (0 · 𝑌)))
3731, 18, 36syl2anc 583 . . . 4 (𝜑 → ((0 · 𝑋) (0 · 𝑌) ↔ (0 · 𝑌) (0 · 𝑌)))
3830, 37mpbird 256 . . 3 (𝜑 → (0 · 𝑋) (0 · 𝑌))
39 eqid 2738 . . . . 5 (+g𝑀) = (+g𝑀)
4014ad2antrr 722 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑀 ∈ oMnd)
4118ad2antrr 722 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑌𝐵)
4240, 24syl 17 . . . . . 6 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑀 ∈ Mnd)
43 simplr 765 . . . . . 6 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑛 ∈ ℕ0)
4431ad2antrr 722 . . . . . 6 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑋𝐵)
4519, 21mulgnn0cl 18635 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝑋𝐵) → (𝑛 · 𝑋) ∈ 𝐵)
4642, 43, 44, 45syl3anc 1369 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → (𝑛 · 𝑋) ∈ 𝐵)
4719, 21mulgnn0cl 18635 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝑌𝐵) → (𝑛 · 𝑌) ∈ 𝐵)
4842, 43, 41, 47syl3anc 1369 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → (𝑛 · 𝑌) ∈ 𝐵)
49 simpr 484 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → (𝑛 · 𝑋) (𝑛 · 𝑌))
50 omndmul.l . . . . . 6 (𝜑𝑋 𝑌)
5150ad2antrr 722 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑋 𝑌)
52 omndmul.c . . . . . 6 (𝜑𝑀 ∈ CMnd)
5352ad2antrr 722 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → 𝑀 ∈ CMnd)
5419, 28, 39, 40, 41, 46, 44, 48, 49, 51, 53omndadd2d 31236 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → ((𝑛 · 𝑋)(+g𝑀)𝑋) ((𝑛 · 𝑌)(+g𝑀)𝑌))
5519, 21, 39mulgnn0p1 18630 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝑋𝐵) → ((𝑛 + 1) · 𝑋) = ((𝑛 · 𝑋)(+g𝑀)𝑋))
5642, 43, 44, 55syl3anc 1369 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → ((𝑛 + 1) · 𝑋) = ((𝑛 · 𝑋)(+g𝑀)𝑋))
5719, 21, 39mulgnn0p1 18630 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝑌𝐵) → ((𝑛 + 1) · 𝑌) = ((𝑛 · 𝑌)(+g𝑀)𝑌))
5842, 43, 41, 57syl3anc 1369 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → ((𝑛 + 1) · 𝑌) = ((𝑛 · 𝑌)(+g𝑀)𝑌))
5954, 56, 583brtr4d 5102 . . 3 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑛 · 𝑋) (𝑛 · 𝑌)) → ((𝑛 + 1) · 𝑋) ((𝑛 + 1) · 𝑌))
604, 7, 10, 13, 38, 59nn0indd 12347 . 2 ((𝜑𝑁 ∈ ℕ0) → (𝑁 · 𝑋) (𝑁 · 𝑌))
611, 60mpdan 683 1 (𝜑 → (𝑁 · 𝑋) (𝑁 · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  0cn0 12163  Basecbs 16840  +gcplusg 16888  lecple 16895  0gc0g 17067  Posetcpo 17940  Tosetctos 18049  Mndcmnd 18300  .gcmg 18615  CMndccmn 19301  oMndcomnd 31225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650  df-0g 17069  df-proset 17928  df-poset 17946  df-toset 18050  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mulg 18616  df-cmn 19303  df-omnd 31227
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator