Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndmul3 Structured version   Visualization version   GIF version

Theorem omndmul3 30764
Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Hypotheses
Ref Expression
omndmul.0 𝐵 = (Base‘𝑀)
omndmul.1 = (le‘𝑀)
omndmul3.m · = (.g𝑀)
omndmul3.0 0 = (0g𝑀)
omndmul3.o (𝜑𝑀 ∈ oMnd)
omndmul3.1 (𝜑𝑁 ∈ ℕ0)
omndmul3.2 (𝜑𝑃 ∈ ℕ0)
omndmul3.3 (𝜑𝑁𝑃)
omndmul3.4 (𝜑𝑋𝐵)
omndmul3.5 (𝜑0 𝑋)
Assertion
Ref Expression
omndmul3 (𝜑 → (𝑁 · 𝑋) (𝑃 · 𝑋))

Proof of Theorem omndmul3
StepHypRef Expression
1 omndmul3.o . . 3 (𝜑𝑀 ∈ oMnd)
2 omndmnd 30755 . . . . 5 (𝑀 ∈ oMnd → 𝑀 ∈ Mnd)
31, 2syl 17 . . . 4 (𝜑𝑀 ∈ Mnd)
4 omndmul.0 . . . . 5 𝐵 = (Base‘𝑀)
5 omndmul3.0 . . . . 5 0 = (0g𝑀)
64, 5mndidcl 17918 . . . 4 (𝑀 ∈ Mnd → 0𝐵)
73, 6syl 17 . . 3 (𝜑0𝐵)
8 omndmul3.1 . . . . 5 (𝜑𝑁 ∈ ℕ0)
9 omndmul3.2 . . . . 5 (𝜑𝑃 ∈ ℕ0)
10 omndmul3.3 . . . . 5 (𝜑𝑁𝑃)
11 nn0sub 11935 . . . . . 6 ((𝑁 ∈ ℕ0𝑃 ∈ ℕ0) → (𝑁𝑃 ↔ (𝑃𝑁) ∈ ℕ0))
1211biimpa 480 . . . . 5 (((𝑁 ∈ ℕ0𝑃 ∈ ℕ0) ∧ 𝑁𝑃) → (𝑃𝑁) ∈ ℕ0)
138, 9, 10, 12syl21anc 836 . . . 4 (𝜑 → (𝑃𝑁) ∈ ℕ0)
14 omndmul3.4 . . . 4 (𝜑𝑋𝐵)
15 omndmul3.m . . . . 5 · = (.g𝑀)
164, 15mulgnn0cl 18236 . . . 4 ((𝑀 ∈ Mnd ∧ (𝑃𝑁) ∈ ℕ0𝑋𝐵) → ((𝑃𝑁) · 𝑋) ∈ 𝐵)
173, 13, 14, 16syl3anc 1368 . . 3 (𝜑 → ((𝑃𝑁) · 𝑋) ∈ 𝐵)
184, 15mulgnn0cl 18236 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
193, 8, 14, 18syl3anc 1368 . . 3 (𝜑 → (𝑁 · 𝑋) ∈ 𝐵)
20 omndmul3.5 . . . 4 (𝜑0 𝑋)
21 omndmul.1 . . . . 5 = (le‘𝑀)
224, 21, 15, 5omndmul2 30763 . . . 4 ((𝑀 ∈ oMnd ∧ (𝑋𝐵 ∧ (𝑃𝑁) ∈ ℕ0) ∧ 0 𝑋) → 0 ((𝑃𝑁) · 𝑋))
231, 14, 13, 20, 22syl121anc 1372 . . 3 (𝜑0 ((𝑃𝑁) · 𝑋))
24 eqid 2798 . . . 4 (+g𝑀) = (+g𝑀)
254, 21, 24omndadd 30757 . . 3 ((𝑀 ∈ oMnd ∧ ( 0𝐵 ∧ ((𝑃𝑁) · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) ∧ 0 ((𝑃𝑁) · 𝑋)) → ( 0 (+g𝑀)(𝑁 · 𝑋)) (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)))
261, 7, 17, 19, 23, 25syl131anc 1380 . 2 (𝜑 → ( 0 (+g𝑀)(𝑁 · 𝑋)) (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)))
274, 24, 5mndlid 17923 . . 3 ((𝑀 ∈ Mnd ∧ (𝑁 · 𝑋) ∈ 𝐵) → ( 0 (+g𝑀)(𝑁 · 𝑋)) = (𝑁 · 𝑋))
283, 19, 27syl2anc 587 . 2 (𝜑 → ( 0 (+g𝑀)(𝑁 · 𝑋)) = (𝑁 · 𝑋))
294, 15, 24mulgnn0dir 18249 . . . 4 ((𝑀 ∈ Mnd ∧ ((𝑃𝑁) ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (((𝑃𝑁) + 𝑁) · 𝑋) = (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)))
303, 13, 8, 14, 29syl13anc 1369 . . 3 (𝜑 → (((𝑃𝑁) + 𝑁) · 𝑋) = (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)))
319nn0cnd 11945 . . . . 5 (𝜑𝑃 ∈ ℂ)
328nn0cnd 11945 . . . . 5 (𝜑𝑁 ∈ ℂ)
3331, 32npcand 10990 . . . 4 (𝜑 → ((𝑃𝑁) + 𝑁) = 𝑃)
3433oveq1d 7150 . . 3 (𝜑 → (((𝑃𝑁) + 𝑁) · 𝑋) = (𝑃 · 𝑋))
3530, 34eqtr3d 2835 . 2 (𝜑 → (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)) = (𝑃 · 𝑋))
3626, 28, 353brtr3d 5061 1 (𝜑 → (𝑁 · 𝑋) (𝑃 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111   class class class wbr 5030  cfv 6324  (class class class)co 7135   + caddc 10529  cle 10665  cmin 10859  0cn0 11885  Basecbs 16475  +gcplusg 16557  lecple 16564  0gc0g 16705  Mndcmnd 17903  .gcmg 18216  oMndcomnd 30748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-seq 13365  df-0g 16707  df-proset 17530  df-poset 17548  df-toset 17636  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mulg 18217  df-omnd 30750
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator