![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omndmul3 | Structured version Visualization version GIF version |
Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
Ref | Expression |
---|---|
omndmul.0 | β’ π΅ = (Baseβπ) |
omndmul.1 | β’ β€ = (leβπ) |
omndmul3.m | β’ Β· = (.gβπ) |
omndmul3.0 | β’ 0 = (0gβπ) |
omndmul3.o | β’ (π β π β oMnd) |
omndmul3.1 | β’ (π β π β β0) |
omndmul3.2 | β’ (π β π β β0) |
omndmul3.3 | β’ (π β π β€ π) |
omndmul3.4 | β’ (π β π β π΅) |
omndmul3.5 | β’ (π β 0 β€ π) |
Ref | Expression |
---|---|
omndmul3 | β’ (π β (π Β· π) β€ (π Β· π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omndmul3.o | . . 3 β’ (π β π β oMnd) | |
2 | omndmnd 32209 | . . . . 5 β’ (π β oMnd β π β Mnd) | |
3 | 1, 2 | syl 17 | . . . 4 β’ (π β π β Mnd) |
4 | omndmul.0 | . . . . 5 β’ π΅ = (Baseβπ) | |
5 | omndmul3.0 | . . . . 5 β’ 0 = (0gβπ) | |
6 | 4, 5 | mndidcl 18636 | . . . 4 β’ (π β Mnd β 0 β π΅) |
7 | 3, 6 | syl 17 | . . 3 β’ (π β 0 β π΅) |
8 | omndmul3.m | . . . 4 β’ Β· = (.gβπ) | |
9 | omndmul3.1 | . . . . 5 β’ (π β π β β0) | |
10 | omndmul3.2 | . . . . 5 β’ (π β π β β0) | |
11 | omndmul3.3 | . . . . 5 β’ (π β π β€ π) | |
12 | nn0sub 12518 | . . . . . 6 β’ ((π β β0 β§ π β β0) β (π β€ π β (π β π) β β0)) | |
13 | 12 | biimpa 477 | . . . . 5 β’ (((π β β0 β§ π β β0) β§ π β€ π) β (π β π) β β0) |
14 | 9, 10, 11, 13 | syl21anc 836 | . . . 4 β’ (π β (π β π) β β0) |
15 | omndmul3.4 | . . . 4 β’ (π β π β π΅) | |
16 | 4, 8, 3, 14, 15 | mulgnn0cld 18969 | . . 3 β’ (π β ((π β π) Β· π) β π΅) |
17 | 4, 8, 3, 9, 15 | mulgnn0cld 18969 | . . 3 β’ (π β (π Β· π) β π΅) |
18 | omndmul3.5 | . . . 4 β’ (π β 0 β€ π) | |
19 | omndmul.1 | . . . . 5 β’ β€ = (leβπ) | |
20 | 4, 19, 8, 5 | omndmul2 32217 | . . . 4 β’ ((π β oMnd β§ (π β π΅ β§ (π β π) β β0) β§ 0 β€ π) β 0 β€ ((π β π) Β· π)) |
21 | 1, 15, 14, 18, 20 | syl121anc 1375 | . . 3 β’ (π β 0 β€ ((π β π) Β· π)) |
22 | eqid 2732 | . . . 4 β’ (+gβπ) = (+gβπ) | |
23 | 4, 19, 22 | omndadd 32211 | . . 3 β’ ((π β oMnd β§ ( 0 β π΅ β§ ((π β π) Β· π) β π΅ β§ (π Β· π) β π΅) β§ 0 β€ ((π β π) Β· π)) β ( 0 (+gβπ)(π Β· π)) β€ (((π β π) Β· π)(+gβπ)(π Β· π))) |
24 | 1, 7, 16, 17, 21, 23 | syl131anc 1383 | . 2 β’ (π β ( 0 (+gβπ)(π Β· π)) β€ (((π β π) Β· π)(+gβπ)(π Β· π))) |
25 | 4, 22, 5 | mndlid 18641 | . . 3 β’ ((π β Mnd β§ (π Β· π) β π΅) β ( 0 (+gβπ)(π Β· π)) = (π Β· π)) |
26 | 3, 17, 25 | syl2anc 584 | . 2 β’ (π β ( 0 (+gβπ)(π Β· π)) = (π Β· π)) |
27 | 4, 8, 22 | mulgnn0dir 18978 | . . . 4 β’ ((π β Mnd β§ ((π β π) β β0 β§ π β β0 β§ π β π΅)) β (((π β π) + π) Β· π) = (((π β π) Β· π)(+gβπ)(π Β· π))) |
28 | 3, 14, 9, 15, 27 | syl13anc 1372 | . . 3 β’ (π β (((π β π) + π) Β· π) = (((π β π) Β· π)(+gβπ)(π Β· π))) |
29 | 10 | nn0cnd 12530 | . . . . 5 β’ (π β π β β) |
30 | 9 | nn0cnd 12530 | . . . . 5 β’ (π β π β β) |
31 | 29, 30 | npcand 11571 | . . . 4 β’ (π β ((π β π) + π) = π) |
32 | 31 | oveq1d 7420 | . . 3 β’ (π β (((π β π) + π) Β· π) = (π Β· π)) |
33 | 28, 32 | eqtr3d 2774 | . 2 β’ (π β (((π β π) Β· π)(+gβπ)(π Β· π)) = (π Β· π)) |
34 | 24, 26, 33 | 3brtr3d 5178 | 1 β’ (π β (π Β· π) β€ (π Β· π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 class class class wbr 5147 βcfv 6540 (class class class)co 7405 + caddc 11109 β€ cle 11245 β cmin 11440 β0cn0 12468 Basecbs 17140 +gcplusg 17193 lecple 17200 0gc0g 17381 Mndcmnd 18621 .gcmg 18944 oMndcomnd 32202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-seq 13963 df-0g 17383 df-proset 18244 df-poset 18262 df-toset 18366 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mulg 18945 df-omnd 32204 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |