Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndmul3 Structured version   Visualization version   GIF version

Theorem omndmul3 33027
Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Hypotheses
Ref Expression
omndmul.0 𝐵 = (Base‘𝑀)
omndmul.1 = (le‘𝑀)
omndmul3.m · = (.g𝑀)
omndmul3.0 0 = (0g𝑀)
omndmul3.o (𝜑𝑀 ∈ oMnd)
omndmul3.1 (𝜑𝑁 ∈ ℕ0)
omndmul3.2 (𝜑𝑃 ∈ ℕ0)
omndmul3.3 (𝜑𝑁𝑃)
omndmul3.4 (𝜑𝑋𝐵)
omndmul3.5 (𝜑0 𝑋)
Assertion
Ref Expression
omndmul3 (𝜑 → (𝑁 · 𝑋) (𝑃 · 𝑋))

Proof of Theorem omndmul3
StepHypRef Expression
1 omndmul3.o . . 3 (𝜑𝑀 ∈ oMnd)
2 omndmnd 33018 . . . . 5 (𝑀 ∈ oMnd → 𝑀 ∈ Mnd)
31, 2syl 17 . . . 4 (𝜑𝑀 ∈ Mnd)
4 omndmul.0 . . . . 5 𝐵 = (Base‘𝑀)
5 omndmul3.0 . . . . 5 0 = (0g𝑀)
64, 5mndidcl 18676 . . . 4 (𝑀 ∈ Mnd → 0𝐵)
73, 6syl 17 . . 3 (𝜑0𝐵)
8 omndmul3.m . . . 4 · = (.g𝑀)
9 omndmul3.1 . . . . 5 (𝜑𝑁 ∈ ℕ0)
10 omndmul3.2 . . . . 5 (𝜑𝑃 ∈ ℕ0)
11 omndmul3.3 . . . . 5 (𝜑𝑁𝑃)
12 nn0sub 12492 . . . . . 6 ((𝑁 ∈ ℕ0𝑃 ∈ ℕ0) → (𝑁𝑃 ↔ (𝑃𝑁) ∈ ℕ0))
1312biimpa 476 . . . . 5 (((𝑁 ∈ ℕ0𝑃 ∈ ℕ0) ∧ 𝑁𝑃) → (𝑃𝑁) ∈ ℕ0)
149, 10, 11, 13syl21anc 837 . . . 4 (𝜑 → (𝑃𝑁) ∈ ℕ0)
15 omndmul3.4 . . . 4 (𝜑𝑋𝐵)
164, 8, 3, 14, 15mulgnn0cld 19027 . . 3 (𝜑 → ((𝑃𝑁) · 𝑋) ∈ 𝐵)
174, 8, 3, 9, 15mulgnn0cld 19027 . . 3 (𝜑 → (𝑁 · 𝑋) ∈ 𝐵)
18 omndmul3.5 . . . 4 (𝜑0 𝑋)
19 omndmul.1 . . . . 5 = (le‘𝑀)
204, 19, 8, 5omndmul2 33026 . . . 4 ((𝑀 ∈ oMnd ∧ (𝑋𝐵 ∧ (𝑃𝑁) ∈ ℕ0) ∧ 0 𝑋) → 0 ((𝑃𝑁) · 𝑋))
211, 15, 14, 18, 20syl121anc 1377 . . 3 (𝜑0 ((𝑃𝑁) · 𝑋))
22 eqid 2729 . . . 4 (+g𝑀) = (+g𝑀)
234, 19, 22omndadd 33020 . . 3 ((𝑀 ∈ oMnd ∧ ( 0𝐵 ∧ ((𝑃𝑁) · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) ∧ 0 ((𝑃𝑁) · 𝑋)) → ( 0 (+g𝑀)(𝑁 · 𝑋)) (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)))
241, 7, 16, 17, 21, 23syl131anc 1385 . 2 (𝜑 → ( 0 (+g𝑀)(𝑁 · 𝑋)) (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)))
254, 22, 5mndlid 18681 . . 3 ((𝑀 ∈ Mnd ∧ (𝑁 · 𝑋) ∈ 𝐵) → ( 0 (+g𝑀)(𝑁 · 𝑋)) = (𝑁 · 𝑋))
263, 17, 25syl2anc 584 . 2 (𝜑 → ( 0 (+g𝑀)(𝑁 · 𝑋)) = (𝑁 · 𝑋))
274, 8, 22mulgnn0dir 19036 . . . 4 ((𝑀 ∈ Mnd ∧ ((𝑃𝑁) ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (((𝑃𝑁) + 𝑁) · 𝑋) = (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)))
283, 14, 9, 15, 27syl13anc 1374 . . 3 (𝜑 → (((𝑃𝑁) + 𝑁) · 𝑋) = (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)))
2910nn0cnd 12505 . . . . 5 (𝜑𝑃 ∈ ℂ)
309nn0cnd 12505 . . . . 5 (𝜑𝑁 ∈ ℂ)
3129, 30npcand 11537 . . . 4 (𝜑 → ((𝑃𝑁) + 𝑁) = 𝑃)
3231oveq1d 7402 . . 3 (𝜑 → (((𝑃𝑁) + 𝑁) · 𝑋) = (𝑃 · 𝑋))
3328, 32eqtr3d 2766 . 2 (𝜑 → (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)) = (𝑃 · 𝑋))
3424, 26, 333brtr3d 5138 1 (𝜑 → (𝑁 · 𝑋) (𝑃 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387   + caddc 11071  cle 11209  cmin 11405  0cn0 12442  Basecbs 17179  +gcplusg 17220  lecple 17227  0gc0g 17402  Mndcmnd 18661  .gcmg 18999  oMndcomnd 33011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-seq 13967  df-0g 17404  df-proset 18255  df-poset 18274  df-toset 18376  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mulg 19000  df-omnd 33013
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator