![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omndmul3 | Structured version Visualization version GIF version |
Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
Ref | Expression |
---|---|
omndmul.0 | β’ π΅ = (Baseβπ) |
omndmul.1 | β’ β€ = (leβπ) |
omndmul3.m | β’ Β· = (.gβπ) |
omndmul3.0 | β’ 0 = (0gβπ) |
omndmul3.o | β’ (π β π β oMnd) |
omndmul3.1 | β’ (π β π β β0) |
omndmul3.2 | β’ (π β π β β0) |
omndmul3.3 | β’ (π β π β€ π) |
omndmul3.4 | β’ (π β π β π΅) |
omndmul3.5 | β’ (π β 0 β€ π) |
Ref | Expression |
---|---|
omndmul3 | β’ (π β (π Β· π) β€ (π Β· π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omndmul3.o | . . 3 β’ (π β π β oMnd) | |
2 | omndmnd 32813 | . . . . 5 β’ (π β oMnd β π β Mnd) | |
3 | 1, 2 | syl 17 | . . . 4 β’ (π β π β Mnd) |
4 | omndmul.0 | . . . . 5 β’ π΅ = (Baseβπ) | |
5 | omndmul3.0 | . . . . 5 β’ 0 = (0gβπ) | |
6 | 4, 5 | mndidcl 18718 | . . . 4 β’ (π β Mnd β 0 β π΅) |
7 | 3, 6 | syl 17 | . . 3 β’ (π β 0 β π΅) |
8 | omndmul3.m | . . . 4 β’ Β· = (.gβπ) | |
9 | omndmul3.1 | . . . . 5 β’ (π β π β β0) | |
10 | omndmul3.2 | . . . . 5 β’ (π β π β β0) | |
11 | omndmul3.3 | . . . . 5 β’ (π β π β€ π) | |
12 | nn0sub 12562 | . . . . . 6 β’ ((π β β0 β§ π β β0) β (π β€ π β (π β π) β β0)) | |
13 | 12 | biimpa 475 | . . . . 5 β’ (((π β β0 β§ π β β0) β§ π β€ π) β (π β π) β β0) |
14 | 9, 10, 11, 13 | syl21anc 836 | . . . 4 β’ (π β (π β π) β β0) |
15 | omndmul3.4 | . . . 4 β’ (π β π β π΅) | |
16 | 4, 8, 3, 14, 15 | mulgnn0cld 19064 | . . 3 β’ (π β ((π β π) Β· π) β π΅) |
17 | 4, 8, 3, 9, 15 | mulgnn0cld 19064 | . . 3 β’ (π β (π Β· π) β π΅) |
18 | omndmul3.5 | . . . 4 β’ (π β 0 β€ π) | |
19 | omndmul.1 | . . . . 5 β’ β€ = (leβπ) | |
20 | 4, 19, 8, 5 | omndmul2 32821 | . . . 4 β’ ((π β oMnd β§ (π β π΅ β§ (π β π) β β0) β§ 0 β€ π) β 0 β€ ((π β π) Β· π)) |
21 | 1, 15, 14, 18, 20 | syl121anc 1372 | . . 3 β’ (π β 0 β€ ((π β π) Β· π)) |
22 | eqid 2728 | . . . 4 β’ (+gβπ) = (+gβπ) | |
23 | 4, 19, 22 | omndadd 32815 | . . 3 β’ ((π β oMnd β§ ( 0 β π΅ β§ ((π β π) Β· π) β π΅ β§ (π Β· π) β π΅) β§ 0 β€ ((π β π) Β· π)) β ( 0 (+gβπ)(π Β· π)) β€ (((π β π) Β· π)(+gβπ)(π Β· π))) |
24 | 1, 7, 16, 17, 21, 23 | syl131anc 1380 | . 2 β’ (π β ( 0 (+gβπ)(π Β· π)) β€ (((π β π) Β· π)(+gβπ)(π Β· π))) |
25 | 4, 22, 5 | mndlid 18723 | . . 3 β’ ((π β Mnd β§ (π Β· π) β π΅) β ( 0 (+gβπ)(π Β· π)) = (π Β· π)) |
26 | 3, 17, 25 | syl2anc 582 | . 2 β’ (π β ( 0 (+gβπ)(π Β· π)) = (π Β· π)) |
27 | 4, 8, 22 | mulgnn0dir 19073 | . . . 4 β’ ((π β Mnd β§ ((π β π) β β0 β§ π β β0 β§ π β π΅)) β (((π β π) + π) Β· π) = (((π β π) Β· π)(+gβπ)(π Β· π))) |
28 | 3, 14, 9, 15, 27 | syl13anc 1369 | . . 3 β’ (π β (((π β π) + π) Β· π) = (((π β π) Β· π)(+gβπ)(π Β· π))) |
29 | 10 | nn0cnd 12574 | . . . . 5 β’ (π β π β β) |
30 | 9 | nn0cnd 12574 | . . . . 5 β’ (π β π β β) |
31 | 29, 30 | npcand 11615 | . . . 4 β’ (π β ((π β π) + π) = π) |
32 | 31 | oveq1d 7441 | . . 3 β’ (π β (((π β π) + π) Β· π) = (π Β· π)) |
33 | 28, 32 | eqtr3d 2770 | . 2 β’ (π β (((π β π) Β· π)(+gβπ)(π Β· π)) = (π Β· π)) |
34 | 24, 26, 33 | 3brtr3d 5183 | 1 β’ (π β (π Β· π) β€ (π Β· π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 class class class wbr 5152 βcfv 6553 (class class class)co 7426 + caddc 11151 β€ cle 11289 β cmin 11484 β0cn0 12512 Basecbs 17189 +gcplusg 17242 lecple 17249 0gc0g 17430 Mndcmnd 18703 .gcmg 19037 oMndcomnd 32806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-n0 12513 df-z 12599 df-uz 12863 df-fz 13527 df-seq 14009 df-0g 17432 df-proset 18296 df-poset 18314 df-toset 18418 df-mgm 18609 df-sgrp 18688 df-mnd 18704 df-mulg 19038 df-omnd 32808 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |