Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndmul3 Structured version   Visualization version   GIF version

Theorem omndmul3 33063
Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Hypotheses
Ref Expression
omndmul.0 𝐵 = (Base‘𝑀)
omndmul.1 = (le‘𝑀)
omndmul3.m · = (.g𝑀)
omndmul3.0 0 = (0g𝑀)
omndmul3.o (𝜑𝑀 ∈ oMnd)
omndmul3.1 (𝜑𝑁 ∈ ℕ0)
omndmul3.2 (𝜑𝑃 ∈ ℕ0)
omndmul3.3 (𝜑𝑁𝑃)
omndmul3.4 (𝜑𝑋𝐵)
omndmul3.5 (𝜑0 𝑋)
Assertion
Ref Expression
omndmul3 (𝜑 → (𝑁 · 𝑋) (𝑃 · 𝑋))

Proof of Theorem omndmul3
StepHypRef Expression
1 omndmul3.o . . 3 (𝜑𝑀 ∈ oMnd)
2 omndmnd 33054 . . . . 5 (𝑀 ∈ oMnd → 𝑀 ∈ Mnd)
31, 2syl 17 . . . 4 (𝜑𝑀 ∈ Mnd)
4 omndmul.0 . . . . 5 𝐵 = (Base‘𝑀)
5 omndmul3.0 . . . . 5 0 = (0g𝑀)
64, 5mndidcl 18787 . . . 4 (𝑀 ∈ Mnd → 0𝐵)
73, 6syl 17 . . 3 (𝜑0𝐵)
8 omndmul3.m . . . 4 · = (.g𝑀)
9 omndmul3.1 . . . . 5 (𝜑𝑁 ∈ ℕ0)
10 omndmul3.2 . . . . 5 (𝜑𝑃 ∈ ℕ0)
11 omndmul3.3 . . . . 5 (𝜑𝑁𝑃)
12 nn0sub 12603 . . . . . 6 ((𝑁 ∈ ℕ0𝑃 ∈ ℕ0) → (𝑁𝑃 ↔ (𝑃𝑁) ∈ ℕ0))
1312biimpa 476 . . . . 5 (((𝑁 ∈ ℕ0𝑃 ∈ ℕ0) ∧ 𝑁𝑃) → (𝑃𝑁) ∈ ℕ0)
149, 10, 11, 13syl21anc 837 . . . 4 (𝜑 → (𝑃𝑁) ∈ ℕ0)
15 omndmul3.4 . . . 4 (𝜑𝑋𝐵)
164, 8, 3, 14, 15mulgnn0cld 19135 . . 3 (𝜑 → ((𝑃𝑁) · 𝑋) ∈ 𝐵)
174, 8, 3, 9, 15mulgnn0cld 19135 . . 3 (𝜑 → (𝑁 · 𝑋) ∈ 𝐵)
18 omndmul3.5 . . . 4 (𝜑0 𝑋)
19 omndmul.1 . . . . 5 = (le‘𝑀)
204, 19, 8, 5omndmul2 33062 . . . 4 ((𝑀 ∈ oMnd ∧ (𝑋𝐵 ∧ (𝑃𝑁) ∈ ℕ0) ∧ 0 𝑋) → 0 ((𝑃𝑁) · 𝑋))
211, 15, 14, 18, 20syl121anc 1375 . . 3 (𝜑0 ((𝑃𝑁) · 𝑋))
22 eqid 2740 . . . 4 (+g𝑀) = (+g𝑀)
234, 19, 22omndadd 33056 . . 3 ((𝑀 ∈ oMnd ∧ ( 0𝐵 ∧ ((𝑃𝑁) · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) ∧ 0 ((𝑃𝑁) · 𝑋)) → ( 0 (+g𝑀)(𝑁 · 𝑋)) (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)))
241, 7, 16, 17, 21, 23syl131anc 1383 . 2 (𝜑 → ( 0 (+g𝑀)(𝑁 · 𝑋)) (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)))
254, 22, 5mndlid 18792 . . 3 ((𝑀 ∈ Mnd ∧ (𝑁 · 𝑋) ∈ 𝐵) → ( 0 (+g𝑀)(𝑁 · 𝑋)) = (𝑁 · 𝑋))
263, 17, 25syl2anc 583 . 2 (𝜑 → ( 0 (+g𝑀)(𝑁 · 𝑋)) = (𝑁 · 𝑋))
274, 8, 22mulgnn0dir 19144 . . . 4 ((𝑀 ∈ Mnd ∧ ((𝑃𝑁) ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (((𝑃𝑁) + 𝑁) · 𝑋) = (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)))
283, 14, 9, 15, 27syl13anc 1372 . . 3 (𝜑 → (((𝑃𝑁) + 𝑁) · 𝑋) = (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)))
2910nn0cnd 12615 . . . . 5 (𝜑𝑃 ∈ ℂ)
309nn0cnd 12615 . . . . 5 (𝜑𝑁 ∈ ℂ)
3129, 30npcand 11651 . . . 4 (𝜑 → ((𝑃𝑁) + 𝑁) = 𝑃)
3231oveq1d 7463 . . 3 (𝜑 → (((𝑃𝑁) + 𝑁) · 𝑋) = (𝑃 · 𝑋))
3328, 32eqtr3d 2782 . 2 (𝜑 → (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)) = (𝑃 · 𝑋))
3424, 26, 333brtr3d 5197 1 (𝜑 → (𝑁 · 𝑋) (𝑃 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448   + caddc 11187  cle 11325  cmin 11520  0cn0 12553  Basecbs 17258  +gcplusg 17311  lecple 17318  0gc0g 17499  Mndcmnd 18772  .gcmg 19107  oMndcomnd 33047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-seq 14053  df-0g 17501  df-proset 18365  df-poset 18383  df-toset 18487  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mulg 19108  df-omnd 33049
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator