| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omndmul3 | Structured version Visualization version GIF version | ||
| Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| Ref | Expression |
|---|---|
| omndmul.0 | ⊢ 𝐵 = (Base‘𝑀) |
| omndmul.1 | ⊢ ≤ = (le‘𝑀) |
| omndmul3.m | ⊢ · = (.g‘𝑀) |
| omndmul3.0 | ⊢ 0 = (0g‘𝑀) |
| omndmul3.o | ⊢ (𝜑 → 𝑀 ∈ oMnd) |
| omndmul3.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| omndmul3.2 | ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
| omndmul3.3 | ⊢ (𝜑 → 𝑁 ≤ 𝑃) |
| omndmul3.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| omndmul3.5 | ⊢ (𝜑 → 0 ≤ 𝑋) |
| Ref | Expression |
|---|---|
| omndmul3 | ⊢ (𝜑 → (𝑁 · 𝑋) ≤ (𝑃 · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omndmul3.o | . . 3 ⊢ (𝜑 → 𝑀 ∈ oMnd) | |
| 2 | omndmnd 20040 | . . . . 5 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Mnd) |
| 4 | omndmul.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 5 | omndmul3.0 | . . . . 5 ⊢ 0 = (0g‘𝑀) | |
| 6 | 4, 5 | mndidcl 18659 | . . . 4 ⊢ (𝑀 ∈ Mnd → 0 ∈ 𝐵) |
| 7 | 3, 6 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) |
| 8 | omndmul3.m | . . . 4 ⊢ · = (.g‘𝑀) | |
| 9 | omndmul3.1 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 10 | omndmul3.2 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℕ0) | |
| 11 | omndmul3.3 | . . . . 5 ⊢ (𝜑 → 𝑁 ≤ 𝑃) | |
| 12 | nn0sub 12438 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0) → (𝑁 ≤ 𝑃 ↔ (𝑃 − 𝑁) ∈ ℕ0)) | |
| 13 | 12 | biimpa 476 | . . . . 5 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0) ∧ 𝑁 ≤ 𝑃) → (𝑃 − 𝑁) ∈ ℕ0) |
| 14 | 9, 10, 11, 13 | syl21anc 837 | . . . 4 ⊢ (𝜑 → (𝑃 − 𝑁) ∈ ℕ0) |
| 15 | omndmul3.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 16 | 4, 8, 3, 14, 15 | mulgnn0cld 19010 | . . 3 ⊢ (𝜑 → ((𝑃 − 𝑁) · 𝑋) ∈ 𝐵) |
| 17 | 4, 8, 3, 9, 15 | mulgnn0cld 19010 | . . 3 ⊢ (𝜑 → (𝑁 · 𝑋) ∈ 𝐵) |
| 18 | omndmul3.5 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝑋) | |
| 19 | omndmul.1 | . . . . 5 ⊢ ≤ = (le‘𝑀) | |
| 20 | 4, 19, 8, 5 | omndmul2 20047 | . . . 4 ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 − 𝑁) ∈ ℕ0) ∧ 0 ≤ 𝑋) → 0 ≤ ((𝑃 − 𝑁) · 𝑋)) |
| 21 | 1, 15, 14, 18, 20 | syl121anc 1377 | . . 3 ⊢ (𝜑 → 0 ≤ ((𝑃 − 𝑁) · 𝑋)) |
| 22 | eqid 2733 | . . . 4 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 23 | 4, 19, 22 | omndadd 20042 | . . 3 ⊢ ((𝑀 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ ((𝑃 − 𝑁) · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) ∧ 0 ≤ ((𝑃 − 𝑁) · 𝑋)) → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) ≤ (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
| 24 | 1, 7, 16, 17, 21, 23 | syl131anc 1385 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) ≤ (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
| 25 | 4, 22, 5 | mndlid 18664 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ (𝑁 · 𝑋) ∈ 𝐵) → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) = (𝑁 · 𝑋)) |
| 26 | 3, 17, 25 | syl2anc 584 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) = (𝑁 · 𝑋)) |
| 27 | 4, 8, 22 | mulgnn0dir 19019 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ ((𝑃 − 𝑁) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵)) → (((𝑃 − 𝑁) + 𝑁) · 𝑋) = (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
| 28 | 3, 14, 9, 15, 27 | syl13anc 1374 | . . 3 ⊢ (𝜑 → (((𝑃 − 𝑁) + 𝑁) · 𝑋) = (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
| 29 | 10 | nn0cnd 12451 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 30 | 9 | nn0cnd 12451 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 31 | 29, 30 | npcand 11483 | . . . 4 ⊢ (𝜑 → ((𝑃 − 𝑁) + 𝑁) = 𝑃) |
| 32 | 31 | oveq1d 7367 | . . 3 ⊢ (𝜑 → (((𝑃 − 𝑁) + 𝑁) · 𝑋) = (𝑃 · 𝑋)) |
| 33 | 28, 32 | eqtr3d 2770 | . 2 ⊢ (𝜑 → (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋)) = (𝑃 · 𝑋)) |
| 34 | 24, 26, 33 | 3brtr3d 5124 | 1 ⊢ (𝜑 → (𝑁 · 𝑋) ≤ (𝑃 · 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 + caddc 11016 ≤ cle 11154 − cmin 11351 ℕ0cn0 12388 Basecbs 17122 +gcplusg 17163 lecple 17170 0gc0g 17345 Mndcmnd 18644 .gcmg 18982 oMndcomnd 20033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-seq 13911 df-0g 17347 df-proset 18202 df-poset 18221 df-toset 18323 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mulg 18983 df-omnd 20035 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |