| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omndmul3 | Structured version Visualization version GIF version | ||
| Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| Ref | Expression |
|---|---|
| omndmul.0 | ⊢ 𝐵 = (Base‘𝑀) |
| omndmul.1 | ⊢ ≤ = (le‘𝑀) |
| omndmul3.m | ⊢ · = (.g‘𝑀) |
| omndmul3.0 | ⊢ 0 = (0g‘𝑀) |
| omndmul3.o | ⊢ (𝜑 → 𝑀 ∈ oMnd) |
| omndmul3.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| omndmul3.2 | ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
| omndmul3.3 | ⊢ (𝜑 → 𝑁 ≤ 𝑃) |
| omndmul3.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| omndmul3.5 | ⊢ (𝜑 → 0 ≤ 𝑋) |
| Ref | Expression |
|---|---|
| omndmul3 | ⊢ (𝜑 → (𝑁 · 𝑋) ≤ (𝑃 · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omndmul3.o | . . 3 ⊢ (𝜑 → 𝑀 ∈ oMnd) | |
| 2 | omndmnd 33077 | . . . . 5 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Mnd) |
| 4 | omndmul.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 5 | omndmul3.0 | . . . . 5 ⊢ 0 = (0g‘𝑀) | |
| 6 | 4, 5 | mndidcl 18732 | . . . 4 ⊢ (𝑀 ∈ Mnd → 0 ∈ 𝐵) |
| 7 | 3, 6 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) |
| 8 | omndmul3.m | . . . 4 ⊢ · = (.g‘𝑀) | |
| 9 | omndmul3.1 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 10 | omndmul3.2 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℕ0) | |
| 11 | omndmul3.3 | . . . . 5 ⊢ (𝜑 → 𝑁 ≤ 𝑃) | |
| 12 | nn0sub 12556 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0) → (𝑁 ≤ 𝑃 ↔ (𝑃 − 𝑁) ∈ ℕ0)) | |
| 13 | 12 | biimpa 476 | . . . . 5 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0) ∧ 𝑁 ≤ 𝑃) → (𝑃 − 𝑁) ∈ ℕ0) |
| 14 | 9, 10, 11, 13 | syl21anc 837 | . . . 4 ⊢ (𝜑 → (𝑃 − 𝑁) ∈ ℕ0) |
| 15 | omndmul3.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 16 | 4, 8, 3, 14, 15 | mulgnn0cld 19083 | . . 3 ⊢ (𝜑 → ((𝑃 − 𝑁) · 𝑋) ∈ 𝐵) |
| 17 | 4, 8, 3, 9, 15 | mulgnn0cld 19083 | . . 3 ⊢ (𝜑 → (𝑁 · 𝑋) ∈ 𝐵) |
| 18 | omndmul3.5 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝑋) | |
| 19 | omndmul.1 | . . . . 5 ⊢ ≤ = (le‘𝑀) | |
| 20 | 4, 19, 8, 5 | omndmul2 33085 | . . . 4 ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 − 𝑁) ∈ ℕ0) ∧ 0 ≤ 𝑋) → 0 ≤ ((𝑃 − 𝑁) · 𝑋)) |
| 21 | 1, 15, 14, 18, 20 | syl121anc 1377 | . . 3 ⊢ (𝜑 → 0 ≤ ((𝑃 − 𝑁) · 𝑋)) |
| 22 | eqid 2736 | . . . 4 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 23 | 4, 19, 22 | omndadd 33079 | . . 3 ⊢ ((𝑀 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ ((𝑃 − 𝑁) · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) ∧ 0 ≤ ((𝑃 − 𝑁) · 𝑋)) → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) ≤ (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
| 24 | 1, 7, 16, 17, 21, 23 | syl131anc 1385 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) ≤ (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
| 25 | 4, 22, 5 | mndlid 18737 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ (𝑁 · 𝑋) ∈ 𝐵) → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) = (𝑁 · 𝑋)) |
| 26 | 3, 17, 25 | syl2anc 584 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) = (𝑁 · 𝑋)) |
| 27 | 4, 8, 22 | mulgnn0dir 19092 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ ((𝑃 − 𝑁) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵)) → (((𝑃 − 𝑁) + 𝑁) · 𝑋) = (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
| 28 | 3, 14, 9, 15, 27 | syl13anc 1374 | . . 3 ⊢ (𝜑 → (((𝑃 − 𝑁) + 𝑁) · 𝑋) = (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
| 29 | 10 | nn0cnd 12569 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 30 | 9 | nn0cnd 12569 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 31 | 29, 30 | npcand 11603 | . . . 4 ⊢ (𝜑 → ((𝑃 − 𝑁) + 𝑁) = 𝑃) |
| 32 | 31 | oveq1d 7425 | . . 3 ⊢ (𝜑 → (((𝑃 − 𝑁) + 𝑁) · 𝑋) = (𝑃 · 𝑋)) |
| 33 | 28, 32 | eqtr3d 2773 | . 2 ⊢ (𝜑 → (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋)) = (𝑃 · 𝑋)) |
| 34 | 24, 26, 33 | 3brtr3d 5155 | 1 ⊢ (𝜑 → (𝑁 · 𝑋) ≤ (𝑃 · 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 + caddc 11137 ≤ cle 11275 − cmin 11471 ℕ0cn0 12506 Basecbs 17233 +gcplusg 17276 lecple 17283 0gc0g 17458 Mndcmnd 18717 .gcmg 19055 oMndcomnd 33070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-seq 14025 df-0g 17460 df-proset 18311 df-poset 18330 df-toset 18432 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mulg 19056 df-omnd 33072 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |