Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > omndmul3 | Structured version Visualization version GIF version |
Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
Ref | Expression |
---|---|
omndmul.0 | ⊢ 𝐵 = (Base‘𝑀) |
omndmul.1 | ⊢ ≤ = (le‘𝑀) |
omndmul3.m | ⊢ · = (.g‘𝑀) |
omndmul3.0 | ⊢ 0 = (0g‘𝑀) |
omndmul3.o | ⊢ (𝜑 → 𝑀 ∈ oMnd) |
omndmul3.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
omndmul3.2 | ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
omndmul3.3 | ⊢ (𝜑 → 𝑁 ≤ 𝑃) |
omndmul3.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
omndmul3.5 | ⊢ (𝜑 → 0 ≤ 𝑋) |
Ref | Expression |
---|---|
omndmul3 | ⊢ (𝜑 → (𝑁 · 𝑋) ≤ (𝑃 · 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omndmul3.o | . . 3 ⊢ (𝜑 → 𝑀 ∈ oMnd) | |
2 | omndmnd 30856 | . . . . 5 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Mnd) |
4 | omndmul.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
5 | omndmul3.0 | . . . . 5 ⊢ 0 = (0g‘𝑀) | |
6 | 4, 5 | mndidcl 17992 | . . . 4 ⊢ (𝑀 ∈ Mnd → 0 ∈ 𝐵) |
7 | 3, 6 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) |
8 | omndmul3.1 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
9 | omndmul3.2 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℕ0) | |
10 | omndmul3.3 | . . . . 5 ⊢ (𝜑 → 𝑁 ≤ 𝑃) | |
11 | nn0sub 11984 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0) → (𝑁 ≤ 𝑃 ↔ (𝑃 − 𝑁) ∈ ℕ0)) | |
12 | 11 | biimpa 480 | . . . . 5 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0) ∧ 𝑁 ≤ 𝑃) → (𝑃 − 𝑁) ∈ ℕ0) |
13 | 8, 9, 10, 12 | syl21anc 836 | . . . 4 ⊢ (𝜑 → (𝑃 − 𝑁) ∈ ℕ0) |
14 | omndmul3.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
15 | omndmul3.m | . . . . 5 ⊢ · = (.g‘𝑀) | |
16 | 4, 15 | mulgnn0cl 18311 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ (𝑃 − 𝑁) ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → ((𝑃 − 𝑁) · 𝑋) ∈ 𝐵) |
17 | 3, 13, 14, 16 | syl3anc 1368 | . . 3 ⊢ (𝜑 → ((𝑃 − 𝑁) · 𝑋) ∈ 𝐵) |
18 | 4, 15 | mulgnn0cl 18311 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
19 | 3, 8, 14, 18 | syl3anc 1368 | . . 3 ⊢ (𝜑 → (𝑁 · 𝑋) ∈ 𝐵) |
20 | omndmul3.5 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝑋) | |
21 | omndmul.1 | . . . . 5 ⊢ ≤ = (le‘𝑀) | |
22 | 4, 21, 15, 5 | omndmul2 30864 | . . . 4 ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 − 𝑁) ∈ ℕ0) ∧ 0 ≤ 𝑋) → 0 ≤ ((𝑃 − 𝑁) · 𝑋)) |
23 | 1, 14, 13, 20, 22 | syl121anc 1372 | . . 3 ⊢ (𝜑 → 0 ≤ ((𝑃 − 𝑁) · 𝑋)) |
24 | eqid 2758 | . . . 4 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
25 | 4, 21, 24 | omndadd 30858 | . . 3 ⊢ ((𝑀 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ ((𝑃 − 𝑁) · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) ∧ 0 ≤ ((𝑃 − 𝑁) · 𝑋)) → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) ≤ (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
26 | 1, 7, 17, 19, 23, 25 | syl131anc 1380 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) ≤ (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
27 | 4, 24, 5 | mndlid 17997 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ (𝑁 · 𝑋) ∈ 𝐵) → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) = (𝑁 · 𝑋)) |
28 | 3, 19, 27 | syl2anc 587 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) = (𝑁 · 𝑋)) |
29 | 4, 15, 24 | mulgnn0dir 18324 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ ((𝑃 − 𝑁) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵)) → (((𝑃 − 𝑁) + 𝑁) · 𝑋) = (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
30 | 3, 13, 8, 14, 29 | syl13anc 1369 | . . 3 ⊢ (𝜑 → (((𝑃 − 𝑁) + 𝑁) · 𝑋) = (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
31 | 9 | nn0cnd 11996 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
32 | 8 | nn0cnd 11996 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
33 | 31, 32 | npcand 11039 | . . . 4 ⊢ (𝜑 → ((𝑃 − 𝑁) + 𝑁) = 𝑃) |
34 | 33 | oveq1d 7165 | . . 3 ⊢ (𝜑 → (((𝑃 − 𝑁) + 𝑁) · 𝑋) = (𝑃 · 𝑋)) |
35 | 30, 34 | eqtr3d 2795 | . 2 ⊢ (𝜑 → (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋)) = (𝑃 · 𝑋)) |
36 | 26, 28, 35 | 3brtr3d 5063 | 1 ⊢ (𝜑 → (𝑁 · 𝑋) ≤ (𝑃 · 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 class class class wbr 5032 ‘cfv 6335 (class class class)co 7150 + caddc 10578 ≤ cle 10714 − cmin 10908 ℕ0cn0 11934 Basecbs 16541 +gcplusg 16623 lecple 16630 0gc0g 16771 Mndcmnd 17977 .gcmg 18291 oMndcomnd 30849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-seq 13419 df-0g 16773 df-proset 17604 df-poset 17622 df-toset 17710 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-mulg 18292 df-omnd 30851 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |