| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omndmul3 | Structured version Visualization version GIF version | ||
| Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| Ref | Expression |
|---|---|
| omndmul.0 | ⊢ 𝐵 = (Base‘𝑀) |
| omndmul.1 | ⊢ ≤ = (le‘𝑀) |
| omndmul3.m | ⊢ · = (.g‘𝑀) |
| omndmul3.0 | ⊢ 0 = (0g‘𝑀) |
| omndmul3.o | ⊢ (𝜑 → 𝑀 ∈ oMnd) |
| omndmul3.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| omndmul3.2 | ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
| omndmul3.3 | ⊢ (𝜑 → 𝑁 ≤ 𝑃) |
| omndmul3.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| omndmul3.5 | ⊢ (𝜑 → 0 ≤ 𝑋) |
| Ref | Expression |
|---|---|
| omndmul3 | ⊢ (𝜑 → (𝑁 · 𝑋) ≤ (𝑃 · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omndmul3.o | . . 3 ⊢ (𝜑 → 𝑀 ∈ oMnd) | |
| 2 | omndmnd 20023 | . . . . 5 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Mnd) |
| 4 | omndmul.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 5 | omndmul3.0 | . . . . 5 ⊢ 0 = (0g‘𝑀) | |
| 6 | 4, 5 | mndidcl 18641 | . . . 4 ⊢ (𝑀 ∈ Mnd → 0 ∈ 𝐵) |
| 7 | 3, 6 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) |
| 8 | omndmul3.m | . . . 4 ⊢ · = (.g‘𝑀) | |
| 9 | omndmul3.1 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 10 | omndmul3.2 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℕ0) | |
| 11 | omndmul3.3 | . . . . 5 ⊢ (𝜑 → 𝑁 ≤ 𝑃) | |
| 12 | nn0sub 12452 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0) → (𝑁 ≤ 𝑃 ↔ (𝑃 − 𝑁) ∈ ℕ0)) | |
| 13 | 12 | biimpa 476 | . . . . 5 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0) ∧ 𝑁 ≤ 𝑃) → (𝑃 − 𝑁) ∈ ℕ0) |
| 14 | 9, 10, 11, 13 | syl21anc 837 | . . . 4 ⊢ (𝜑 → (𝑃 − 𝑁) ∈ ℕ0) |
| 15 | omndmul3.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 16 | 4, 8, 3, 14, 15 | mulgnn0cld 18992 | . . 3 ⊢ (𝜑 → ((𝑃 − 𝑁) · 𝑋) ∈ 𝐵) |
| 17 | 4, 8, 3, 9, 15 | mulgnn0cld 18992 | . . 3 ⊢ (𝜑 → (𝑁 · 𝑋) ∈ 𝐵) |
| 18 | omndmul3.5 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝑋) | |
| 19 | omndmul.1 | . . . . 5 ⊢ ≤ = (le‘𝑀) | |
| 20 | 4, 19, 8, 5 | omndmul2 20030 | . . . 4 ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 − 𝑁) ∈ ℕ0) ∧ 0 ≤ 𝑋) → 0 ≤ ((𝑃 − 𝑁) · 𝑋)) |
| 21 | 1, 15, 14, 18, 20 | syl121anc 1377 | . . 3 ⊢ (𝜑 → 0 ≤ ((𝑃 − 𝑁) · 𝑋)) |
| 22 | eqid 2729 | . . . 4 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 23 | 4, 19, 22 | omndadd 20025 | . . 3 ⊢ ((𝑀 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ ((𝑃 − 𝑁) · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) ∧ 0 ≤ ((𝑃 − 𝑁) · 𝑋)) → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) ≤ (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
| 24 | 1, 7, 16, 17, 21, 23 | syl131anc 1385 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) ≤ (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
| 25 | 4, 22, 5 | mndlid 18646 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ (𝑁 · 𝑋) ∈ 𝐵) → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) = (𝑁 · 𝑋)) |
| 26 | 3, 17, 25 | syl2anc 584 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) = (𝑁 · 𝑋)) |
| 27 | 4, 8, 22 | mulgnn0dir 19001 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ ((𝑃 − 𝑁) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵)) → (((𝑃 − 𝑁) + 𝑁) · 𝑋) = (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
| 28 | 3, 14, 9, 15, 27 | syl13anc 1374 | . . 3 ⊢ (𝜑 → (((𝑃 − 𝑁) + 𝑁) · 𝑋) = (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
| 29 | 10 | nn0cnd 12465 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 30 | 9 | nn0cnd 12465 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 31 | 29, 30 | npcand 11497 | . . . 4 ⊢ (𝜑 → ((𝑃 − 𝑁) + 𝑁) = 𝑃) |
| 32 | 31 | oveq1d 7368 | . . 3 ⊢ (𝜑 → (((𝑃 − 𝑁) + 𝑁) · 𝑋) = (𝑃 · 𝑋)) |
| 33 | 28, 32 | eqtr3d 2766 | . 2 ⊢ (𝜑 → (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋)) = (𝑃 · 𝑋)) |
| 34 | 24, 26, 33 | 3brtr3d 5126 | 1 ⊢ (𝜑 → (𝑁 · 𝑋) ≤ (𝑃 · 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 + caddc 11031 ≤ cle 11169 − cmin 11365 ℕ0cn0 12402 Basecbs 17138 +gcplusg 17179 lecple 17186 0gc0g 17361 Mndcmnd 18626 .gcmg 18964 oMndcomnd 20016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-seq 13927 df-0g 17363 df-proset 18218 df-poset 18237 df-toset 18339 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mulg 18965 df-omnd 20018 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |