| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omndmul3 | Structured version Visualization version GIF version | ||
| Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| Ref | Expression |
|---|---|
| omndmul.0 | ⊢ 𝐵 = (Base‘𝑀) |
| omndmul.1 | ⊢ ≤ = (le‘𝑀) |
| omndmul3.m | ⊢ · = (.g‘𝑀) |
| omndmul3.0 | ⊢ 0 = (0g‘𝑀) |
| omndmul3.o | ⊢ (𝜑 → 𝑀 ∈ oMnd) |
| omndmul3.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| omndmul3.2 | ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
| omndmul3.3 | ⊢ (𝜑 → 𝑁 ≤ 𝑃) |
| omndmul3.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| omndmul3.5 | ⊢ (𝜑 → 0 ≤ 𝑋) |
| Ref | Expression |
|---|---|
| omndmul3 | ⊢ (𝜑 → (𝑁 · 𝑋) ≤ (𝑃 · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omndmul3.o | . . 3 ⊢ (𝜑 → 𝑀 ∈ oMnd) | |
| 2 | omndmnd 33082 | . . . . 5 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Mnd) |
| 4 | omndmul.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 5 | omndmul3.0 | . . . . 5 ⊢ 0 = (0g‘𝑀) | |
| 6 | 4, 5 | mndidcl 18763 | . . . 4 ⊢ (𝑀 ∈ Mnd → 0 ∈ 𝐵) |
| 7 | 3, 6 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) |
| 8 | omndmul3.m | . . . 4 ⊢ · = (.g‘𝑀) | |
| 9 | omndmul3.1 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 10 | omndmul3.2 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℕ0) | |
| 11 | omndmul3.3 | . . . . 5 ⊢ (𝜑 → 𝑁 ≤ 𝑃) | |
| 12 | nn0sub 12578 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0) → (𝑁 ≤ 𝑃 ↔ (𝑃 − 𝑁) ∈ ℕ0)) | |
| 13 | 12 | biimpa 476 | . . . . 5 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0) ∧ 𝑁 ≤ 𝑃) → (𝑃 − 𝑁) ∈ ℕ0) |
| 14 | 9, 10, 11, 13 | syl21anc 837 | . . . 4 ⊢ (𝜑 → (𝑃 − 𝑁) ∈ ℕ0) |
| 15 | omndmul3.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 16 | 4, 8, 3, 14, 15 | mulgnn0cld 19114 | . . 3 ⊢ (𝜑 → ((𝑃 − 𝑁) · 𝑋) ∈ 𝐵) |
| 17 | 4, 8, 3, 9, 15 | mulgnn0cld 19114 | . . 3 ⊢ (𝜑 → (𝑁 · 𝑋) ∈ 𝐵) |
| 18 | omndmul3.5 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝑋) | |
| 19 | omndmul.1 | . . . . 5 ⊢ ≤ = (le‘𝑀) | |
| 20 | 4, 19, 8, 5 | omndmul2 33090 | . . . 4 ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 − 𝑁) ∈ ℕ0) ∧ 0 ≤ 𝑋) → 0 ≤ ((𝑃 − 𝑁) · 𝑋)) |
| 21 | 1, 15, 14, 18, 20 | syl121anc 1376 | . . 3 ⊢ (𝜑 → 0 ≤ ((𝑃 − 𝑁) · 𝑋)) |
| 22 | eqid 2736 | . . . 4 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 23 | 4, 19, 22 | omndadd 33084 | . . 3 ⊢ ((𝑀 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ ((𝑃 − 𝑁) · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) ∧ 0 ≤ ((𝑃 − 𝑁) · 𝑋)) → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) ≤ (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
| 24 | 1, 7, 16, 17, 21, 23 | syl131anc 1384 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) ≤ (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
| 25 | 4, 22, 5 | mndlid 18768 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ (𝑁 · 𝑋) ∈ 𝐵) → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) = (𝑁 · 𝑋)) |
| 26 | 3, 17, 25 | syl2anc 584 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) = (𝑁 · 𝑋)) |
| 27 | 4, 8, 22 | mulgnn0dir 19123 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ ((𝑃 − 𝑁) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵)) → (((𝑃 − 𝑁) + 𝑁) · 𝑋) = (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
| 28 | 3, 14, 9, 15, 27 | syl13anc 1373 | . . 3 ⊢ (𝜑 → (((𝑃 − 𝑁) + 𝑁) · 𝑋) = (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
| 29 | 10 | nn0cnd 12591 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 30 | 9 | nn0cnd 12591 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 31 | 29, 30 | npcand 11625 | . . . 4 ⊢ (𝜑 → ((𝑃 − 𝑁) + 𝑁) = 𝑃) |
| 32 | 31 | oveq1d 7447 | . . 3 ⊢ (𝜑 → (((𝑃 − 𝑁) + 𝑁) · 𝑋) = (𝑃 · 𝑋)) |
| 33 | 28, 32 | eqtr3d 2778 | . 2 ⊢ (𝜑 → (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋)) = (𝑃 · 𝑋)) |
| 34 | 24, 26, 33 | 3brtr3d 5173 | 1 ⊢ (𝜑 → (𝑁 · 𝑋) ≤ (𝑃 · 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 + caddc 11159 ≤ cle 11297 − cmin 11493 ℕ0cn0 12528 Basecbs 17248 +gcplusg 17298 lecple 17305 0gc0g 17485 Mndcmnd 18748 .gcmg 19086 oMndcomnd 33075 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-seq 14044 df-0g 17487 df-proset 18341 df-poset 18360 df-toset 18463 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mulg 19087 df-omnd 33077 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |