Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndmul3 Structured version   Visualization version   GIF version

Theorem omndmul3 31241
Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Hypotheses
Ref Expression
omndmul.0 𝐵 = (Base‘𝑀)
omndmul.1 = (le‘𝑀)
omndmul3.m · = (.g𝑀)
omndmul3.0 0 = (0g𝑀)
omndmul3.o (𝜑𝑀 ∈ oMnd)
omndmul3.1 (𝜑𝑁 ∈ ℕ0)
omndmul3.2 (𝜑𝑃 ∈ ℕ0)
omndmul3.3 (𝜑𝑁𝑃)
omndmul3.4 (𝜑𝑋𝐵)
omndmul3.5 (𝜑0 𝑋)
Assertion
Ref Expression
omndmul3 (𝜑 → (𝑁 · 𝑋) (𝑃 · 𝑋))

Proof of Theorem omndmul3
StepHypRef Expression
1 omndmul3.o . . 3 (𝜑𝑀 ∈ oMnd)
2 omndmnd 31232 . . . . 5 (𝑀 ∈ oMnd → 𝑀 ∈ Mnd)
31, 2syl 17 . . . 4 (𝜑𝑀 ∈ Mnd)
4 omndmul.0 . . . . 5 𝐵 = (Base‘𝑀)
5 omndmul3.0 . . . . 5 0 = (0g𝑀)
64, 5mndidcl 18315 . . . 4 (𝑀 ∈ Mnd → 0𝐵)
73, 6syl 17 . . 3 (𝜑0𝐵)
8 omndmul3.1 . . . . 5 (𝜑𝑁 ∈ ℕ0)
9 omndmul3.2 . . . . 5 (𝜑𝑃 ∈ ℕ0)
10 omndmul3.3 . . . . 5 (𝜑𝑁𝑃)
11 nn0sub 12213 . . . . . 6 ((𝑁 ∈ ℕ0𝑃 ∈ ℕ0) → (𝑁𝑃 ↔ (𝑃𝑁) ∈ ℕ0))
1211biimpa 476 . . . . 5 (((𝑁 ∈ ℕ0𝑃 ∈ ℕ0) ∧ 𝑁𝑃) → (𝑃𝑁) ∈ ℕ0)
138, 9, 10, 12syl21anc 834 . . . 4 (𝜑 → (𝑃𝑁) ∈ ℕ0)
14 omndmul3.4 . . . 4 (𝜑𝑋𝐵)
15 omndmul3.m . . . . 5 · = (.g𝑀)
164, 15mulgnn0cl 18635 . . . 4 ((𝑀 ∈ Mnd ∧ (𝑃𝑁) ∈ ℕ0𝑋𝐵) → ((𝑃𝑁) · 𝑋) ∈ 𝐵)
173, 13, 14, 16syl3anc 1369 . . 3 (𝜑 → ((𝑃𝑁) · 𝑋) ∈ 𝐵)
184, 15mulgnn0cl 18635 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
193, 8, 14, 18syl3anc 1369 . . 3 (𝜑 → (𝑁 · 𝑋) ∈ 𝐵)
20 omndmul3.5 . . . 4 (𝜑0 𝑋)
21 omndmul.1 . . . . 5 = (le‘𝑀)
224, 21, 15, 5omndmul2 31240 . . . 4 ((𝑀 ∈ oMnd ∧ (𝑋𝐵 ∧ (𝑃𝑁) ∈ ℕ0) ∧ 0 𝑋) → 0 ((𝑃𝑁) · 𝑋))
231, 14, 13, 20, 22syl121anc 1373 . . 3 (𝜑0 ((𝑃𝑁) · 𝑋))
24 eqid 2738 . . . 4 (+g𝑀) = (+g𝑀)
254, 21, 24omndadd 31234 . . 3 ((𝑀 ∈ oMnd ∧ ( 0𝐵 ∧ ((𝑃𝑁) · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) ∧ 0 ((𝑃𝑁) · 𝑋)) → ( 0 (+g𝑀)(𝑁 · 𝑋)) (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)))
261, 7, 17, 19, 23, 25syl131anc 1381 . 2 (𝜑 → ( 0 (+g𝑀)(𝑁 · 𝑋)) (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)))
274, 24, 5mndlid 18320 . . 3 ((𝑀 ∈ Mnd ∧ (𝑁 · 𝑋) ∈ 𝐵) → ( 0 (+g𝑀)(𝑁 · 𝑋)) = (𝑁 · 𝑋))
283, 19, 27syl2anc 583 . 2 (𝜑 → ( 0 (+g𝑀)(𝑁 · 𝑋)) = (𝑁 · 𝑋))
294, 15, 24mulgnn0dir 18648 . . . 4 ((𝑀 ∈ Mnd ∧ ((𝑃𝑁) ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (((𝑃𝑁) + 𝑁) · 𝑋) = (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)))
303, 13, 8, 14, 29syl13anc 1370 . . 3 (𝜑 → (((𝑃𝑁) + 𝑁) · 𝑋) = (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)))
319nn0cnd 12225 . . . . 5 (𝜑𝑃 ∈ ℂ)
328nn0cnd 12225 . . . . 5 (𝜑𝑁 ∈ ℂ)
3331, 32npcand 11266 . . . 4 (𝜑 → ((𝑃𝑁) + 𝑁) = 𝑃)
3433oveq1d 7270 . . 3 (𝜑 → (((𝑃𝑁) + 𝑁) · 𝑋) = (𝑃 · 𝑋))
3530, 34eqtr3d 2780 . 2 (𝜑 → (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)) = (𝑃 · 𝑋))
3626, 28, 353brtr3d 5101 1 (𝜑 → (𝑁 · 𝑋) (𝑃 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255   + caddc 10805  cle 10941  cmin 11135  0cn0 12163  Basecbs 16840  +gcplusg 16888  lecple 16895  0gc0g 17067  Mndcmnd 18300  .gcmg 18615  oMndcomnd 31225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650  df-0g 17069  df-proset 17928  df-poset 17946  df-toset 18050  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mulg 18616  df-omnd 31227
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator