Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > omndmul3 | Structured version Visualization version GIF version |
Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
Ref | Expression |
---|---|
omndmul.0 | ⊢ 𝐵 = (Base‘𝑀) |
omndmul.1 | ⊢ ≤ = (le‘𝑀) |
omndmul3.m | ⊢ · = (.g‘𝑀) |
omndmul3.0 | ⊢ 0 = (0g‘𝑀) |
omndmul3.o | ⊢ (𝜑 → 𝑀 ∈ oMnd) |
omndmul3.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
omndmul3.2 | ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
omndmul3.3 | ⊢ (𝜑 → 𝑁 ≤ 𝑃) |
omndmul3.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
omndmul3.5 | ⊢ (𝜑 → 0 ≤ 𝑋) |
Ref | Expression |
---|---|
omndmul3 | ⊢ (𝜑 → (𝑁 · 𝑋) ≤ (𝑃 · 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omndmul3.o | . . 3 ⊢ (𝜑 → 𝑀 ∈ oMnd) | |
2 | omndmnd 31330 | . . . . 5 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Mnd) |
4 | omndmul.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
5 | omndmul3.0 | . . . . 5 ⊢ 0 = (0g‘𝑀) | |
6 | 4, 5 | mndidcl 18400 | . . . 4 ⊢ (𝑀 ∈ Mnd → 0 ∈ 𝐵) |
7 | 3, 6 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) |
8 | omndmul3.1 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
9 | omndmul3.2 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℕ0) | |
10 | omndmul3.3 | . . . . 5 ⊢ (𝜑 → 𝑁 ≤ 𝑃) | |
11 | nn0sub 12283 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0) → (𝑁 ≤ 𝑃 ↔ (𝑃 − 𝑁) ∈ ℕ0)) | |
12 | 11 | biimpa 477 | . . . . 5 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0) ∧ 𝑁 ≤ 𝑃) → (𝑃 − 𝑁) ∈ ℕ0) |
13 | 8, 9, 10, 12 | syl21anc 835 | . . . 4 ⊢ (𝜑 → (𝑃 − 𝑁) ∈ ℕ0) |
14 | omndmul3.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
15 | omndmul3.m | . . . . 5 ⊢ · = (.g‘𝑀) | |
16 | 4, 15 | mulgnn0cl 18720 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ (𝑃 − 𝑁) ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → ((𝑃 − 𝑁) · 𝑋) ∈ 𝐵) |
17 | 3, 13, 14, 16 | syl3anc 1370 | . . 3 ⊢ (𝜑 → ((𝑃 − 𝑁) · 𝑋) ∈ 𝐵) |
18 | 4, 15 | mulgnn0cl 18720 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
19 | 3, 8, 14, 18 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝑁 · 𝑋) ∈ 𝐵) |
20 | omndmul3.5 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝑋) | |
21 | omndmul.1 | . . . . 5 ⊢ ≤ = (le‘𝑀) | |
22 | 4, 21, 15, 5 | omndmul2 31338 | . . . 4 ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 − 𝑁) ∈ ℕ0) ∧ 0 ≤ 𝑋) → 0 ≤ ((𝑃 − 𝑁) · 𝑋)) |
23 | 1, 14, 13, 20, 22 | syl121anc 1374 | . . 3 ⊢ (𝜑 → 0 ≤ ((𝑃 − 𝑁) · 𝑋)) |
24 | eqid 2738 | . . . 4 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
25 | 4, 21, 24 | omndadd 31332 | . . 3 ⊢ ((𝑀 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ ((𝑃 − 𝑁) · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) ∧ 0 ≤ ((𝑃 − 𝑁) · 𝑋)) → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) ≤ (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
26 | 1, 7, 17, 19, 23, 25 | syl131anc 1382 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) ≤ (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
27 | 4, 24, 5 | mndlid 18405 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ (𝑁 · 𝑋) ∈ 𝐵) → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) = (𝑁 · 𝑋)) |
28 | 3, 19, 27 | syl2anc 584 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) = (𝑁 · 𝑋)) |
29 | 4, 15, 24 | mulgnn0dir 18733 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ ((𝑃 − 𝑁) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵)) → (((𝑃 − 𝑁) + 𝑁) · 𝑋) = (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
30 | 3, 13, 8, 14, 29 | syl13anc 1371 | . . 3 ⊢ (𝜑 → (((𝑃 − 𝑁) + 𝑁) · 𝑋) = (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
31 | 9 | nn0cnd 12295 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
32 | 8 | nn0cnd 12295 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
33 | 31, 32 | npcand 11336 | . . . 4 ⊢ (𝜑 → ((𝑃 − 𝑁) + 𝑁) = 𝑃) |
34 | 33 | oveq1d 7290 | . . 3 ⊢ (𝜑 → (((𝑃 − 𝑁) + 𝑁) · 𝑋) = (𝑃 · 𝑋)) |
35 | 30, 34 | eqtr3d 2780 | . 2 ⊢ (𝜑 → (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋)) = (𝑃 · 𝑋)) |
36 | 26, 28, 35 | 3brtr3d 5105 | 1 ⊢ (𝜑 → (𝑁 · 𝑋) ≤ (𝑃 · 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 + caddc 10874 ≤ cle 11010 − cmin 11205 ℕ0cn0 12233 Basecbs 16912 +gcplusg 16962 lecple 16969 0gc0g 17150 Mndcmnd 18385 .gcmg 18700 oMndcomnd 31323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-seq 13722 df-0g 17152 df-proset 18013 df-poset 18031 df-toset 18135 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mulg 18701 df-omnd 31325 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |