![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omndmul3 | Structured version Visualization version GIF version |
Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
Ref | Expression |
---|---|
omndmul.0 | ⊢ 𝐵 = (Base‘𝑀) |
omndmul.1 | ⊢ ≤ = (le‘𝑀) |
omndmul3.m | ⊢ · = (.g‘𝑀) |
omndmul3.0 | ⊢ 0 = (0g‘𝑀) |
omndmul3.o | ⊢ (𝜑 → 𝑀 ∈ oMnd) |
omndmul3.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
omndmul3.2 | ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
omndmul3.3 | ⊢ (𝜑 → 𝑁 ≤ 𝑃) |
omndmul3.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
omndmul3.5 | ⊢ (𝜑 → 0 ≤ 𝑋) |
Ref | Expression |
---|---|
omndmul3 | ⊢ (𝜑 → (𝑁 · 𝑋) ≤ (𝑃 · 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omndmul3.o | . . 3 ⊢ (𝜑 → 𝑀 ∈ oMnd) | |
2 | omndmnd 30238 | . . . . 5 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Mnd) |
4 | omndmul.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
5 | omndmul3.0 | . . . . 5 ⊢ 0 = (0g‘𝑀) | |
6 | 4, 5 | mndidcl 17661 | . . . 4 ⊢ (𝑀 ∈ Mnd → 0 ∈ 𝐵) |
7 | 3, 6 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) |
8 | omndmul3.1 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
9 | omndmul3.2 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℕ0) | |
10 | omndmul3.3 | . . . . 5 ⊢ (𝜑 → 𝑁 ≤ 𝑃) | |
11 | nn0sub 11670 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0) → (𝑁 ≤ 𝑃 ↔ (𝑃 − 𝑁) ∈ ℕ0)) | |
12 | 11 | biimpa 470 | . . . . 5 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0) ∧ 𝑁 ≤ 𝑃) → (𝑃 − 𝑁) ∈ ℕ0) |
13 | 8, 9, 10, 12 | syl21anc 871 | . . . 4 ⊢ (𝜑 → (𝑃 − 𝑁) ∈ ℕ0) |
14 | omndmul3.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
15 | omndmul3.m | . . . . 5 ⊢ · = (.g‘𝑀) | |
16 | 4, 15 | mulgnn0cl 17911 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ (𝑃 − 𝑁) ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → ((𝑃 − 𝑁) · 𝑋) ∈ 𝐵) |
17 | 3, 13, 14, 16 | syl3anc 1494 | . . 3 ⊢ (𝜑 → ((𝑃 − 𝑁) · 𝑋) ∈ 𝐵) |
18 | 4, 15 | mulgnn0cl 17911 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
19 | 3, 8, 14, 18 | syl3anc 1494 | . . 3 ⊢ (𝜑 → (𝑁 · 𝑋) ∈ 𝐵) |
20 | omndmul3.5 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝑋) | |
21 | omndmul.1 | . . . . 5 ⊢ ≤ = (le‘𝑀) | |
22 | 4, 21, 15, 5 | omndmul2 30246 | . . . 4 ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 − 𝑁) ∈ ℕ0) ∧ 0 ≤ 𝑋) → 0 ≤ ((𝑃 − 𝑁) · 𝑋)) |
23 | 1, 14, 13, 20, 22 | syl121anc 1498 | . . 3 ⊢ (𝜑 → 0 ≤ ((𝑃 − 𝑁) · 𝑋)) |
24 | eqid 2825 | . . . 4 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
25 | 4, 21, 24 | omndadd 30240 | . . 3 ⊢ ((𝑀 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ ((𝑃 − 𝑁) · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) ∧ 0 ≤ ((𝑃 − 𝑁) · 𝑋)) → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) ≤ (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
26 | 1, 7, 17, 19, 23, 25 | syl131anc 1506 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) ≤ (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
27 | 4, 24, 5 | mndlid 17664 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ (𝑁 · 𝑋) ∈ 𝐵) → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) = (𝑁 · 𝑋)) |
28 | 3, 19, 27 | syl2anc 579 | . 2 ⊢ (𝜑 → ( 0 (+g‘𝑀)(𝑁 · 𝑋)) = (𝑁 · 𝑋)) |
29 | 4, 15, 24 | mulgnn0dir 17923 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ ((𝑃 − 𝑁) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵)) → (((𝑃 − 𝑁) + 𝑁) · 𝑋) = (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
30 | 3, 13, 8, 14, 29 | syl13anc 1495 | . . 3 ⊢ (𝜑 → (((𝑃 − 𝑁) + 𝑁) · 𝑋) = (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋))) |
31 | 9 | nn0cnd 11680 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
32 | 8 | nn0cnd 11680 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
33 | 31, 32 | npcand 10717 | . . . 4 ⊢ (𝜑 → ((𝑃 − 𝑁) + 𝑁) = 𝑃) |
34 | 33 | oveq1d 6920 | . . 3 ⊢ (𝜑 → (((𝑃 − 𝑁) + 𝑁) · 𝑋) = (𝑃 · 𝑋)) |
35 | 30, 34 | eqtr3d 2863 | . 2 ⊢ (𝜑 → (((𝑃 − 𝑁) · 𝑋)(+g‘𝑀)(𝑁 · 𝑋)) = (𝑃 · 𝑋)) |
36 | 26, 28, 35 | 3brtr3d 4904 | 1 ⊢ (𝜑 → (𝑁 · 𝑋) ≤ (𝑃 · 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 class class class wbr 4873 ‘cfv 6123 (class class class)co 6905 + caddc 10255 ≤ cle 10392 − cmin 10585 ℕ0cn0 11618 Basecbs 16222 +gcplusg 16305 lecple 16312 0gc0g 16453 Mndcmnd 17647 .gcmg 17894 oMndcomnd 30231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-inf2 8815 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-n0 11619 df-z 11705 df-uz 11969 df-fz 12620 df-seq 13096 df-0g 16455 df-proset 17281 df-poset 17299 df-toset 17387 df-mgm 17595 df-sgrp 17637 df-mnd 17648 df-mulg 17895 df-omnd 30233 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |