Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndadd2rd Structured version   Visualization version   GIF version

Theorem omndadd2rd 32996
Description: In a left- and right- ordered monoid, the ordering is compatible with monoid addition. Double addition version. (Contributed by Thierry Arnoux, 2-May-2018.)
Hypotheses
Ref Expression
omndadd.0 𝐵 = (Base‘𝑀)
omndadd.1 = (le‘𝑀)
omndadd.2 + = (+g𝑀)
omndadd2d.m (𝜑𝑀 ∈ oMnd)
omndadd2d.w (𝜑𝑊𝐵)
omndadd2d.x (𝜑𝑋𝐵)
omndadd2d.y (𝜑𝑌𝐵)
omndadd2d.z (𝜑𝑍𝐵)
omndadd2d.1 (𝜑𝑋 𝑍)
omndadd2d.2 (𝜑𝑌 𝑊)
omndadd2rd.c (𝜑 → (oppg𝑀) ∈ oMnd)
Assertion
Ref Expression
omndadd2rd (𝜑 → (𝑋 + 𝑌) (𝑍 + 𝑊))

Proof of Theorem omndadd2rd
StepHypRef Expression
1 omndadd2d.m . . 3 (𝜑𝑀 ∈ oMnd)
2 omndtos 32992 . . 3 (𝑀 ∈ oMnd → 𝑀 ∈ Toset)
3 tospos 18355 . . 3 (𝑀 ∈ Toset → 𝑀 ∈ Poset)
41, 2, 33syl 18 . 2 (𝜑𝑀 ∈ Poset)
5 omndmnd 32991 . . . . 5 (𝑀 ∈ oMnd → 𝑀 ∈ Mnd)
61, 5syl 17 . . . 4 (𝜑𝑀 ∈ Mnd)
7 omndadd2d.x . . . 4 (𝜑𝑋𝐵)
8 omndadd2d.y . . . 4 (𝜑𝑌𝐵)
9 omndadd.0 . . . . 5 𝐵 = (Base‘𝑀)
10 omndadd.2 . . . . 5 + = (+g𝑀)
119, 10mndcl 18645 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
126, 7, 8, 11syl3anc 1373 . . 3 (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
13 omndadd2d.w . . . 4 (𝜑𝑊𝐵)
149, 10mndcl 18645 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑋𝐵𝑊𝐵) → (𝑋 + 𝑊) ∈ 𝐵)
156, 7, 13, 14syl3anc 1373 . . 3 (𝜑 → (𝑋 + 𝑊) ∈ 𝐵)
16 omndadd2d.z . . . 4 (𝜑𝑍𝐵)
179, 10mndcl 18645 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑍𝐵𝑊𝐵) → (𝑍 + 𝑊) ∈ 𝐵)
186, 16, 13, 17syl3anc 1373 . . 3 (𝜑 → (𝑍 + 𝑊) ∈ 𝐵)
1912, 15, 183jca 1128 . 2 (𝜑 → ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵))
20 omndadd2rd.c . . 3 (𝜑 → (oppg𝑀) ∈ oMnd)
21 omndadd2d.2 . . 3 (𝜑𝑌 𝑊)
22 omndadd.1 . . . 4 = (le‘𝑀)
239, 22, 10omndaddr 32994 . . 3 (((oppg𝑀) ∈ oMnd ∧ (𝑌𝐵𝑊𝐵𝑋𝐵) ∧ 𝑌 𝑊) → (𝑋 + 𝑌) (𝑋 + 𝑊))
2420, 8, 13, 7, 21, 23syl131anc 1385 . 2 (𝜑 → (𝑋 + 𝑌) (𝑋 + 𝑊))
25 omndadd2d.1 . . 3 (𝜑𝑋 𝑍)
269, 22, 10omndadd 32993 . . 3 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑍𝐵𝑊𝐵) ∧ 𝑋 𝑍) → (𝑋 + 𝑊) (𝑍 + 𝑊))
271, 7, 16, 13, 25, 26syl131anc 1385 . 2 (𝜑 → (𝑋 + 𝑊) (𝑍 + 𝑊))
289, 22postr 18257 . . 3 ((𝑀 ∈ Poset ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) → (((𝑋 + 𝑌) (𝑋 + 𝑊) ∧ (𝑋 + 𝑊) (𝑍 + 𝑊)) → (𝑋 + 𝑌) (𝑍 + 𝑊)))
2928imp 406 . 2 (((𝑀 ∈ Poset ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) ∧ ((𝑋 + 𝑌) (𝑋 + 𝑊) ∧ (𝑋 + 𝑊) (𝑍 + 𝑊))) → (𝑋 + 𝑌) (𝑍 + 𝑊))
304, 19, 24, 27, 29syl22anc 838 1 (𝜑 → (𝑋 + 𝑌) (𝑍 + 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  lecple 17203  Posetcpo 18244  Tosetctos 18351  Mndcmnd 18637  oppgcoppg 19253  oMndcomnd 32984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-dec 12626  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-ple 17216  df-poset 18250  df-toset 18352  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-oppg 19254  df-omnd 32986
This theorem is referenced by:  archiabllem2c  33122
  Copyright terms: Public domain W3C validator