| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omndadd2rd | Structured version Visualization version GIF version | ||
| Description: In a left- and right- ordered monoid, the ordering is compatible with monoid addition. Double addition version. (Contributed by Thierry Arnoux, 2-May-2018.) |
| Ref | Expression |
|---|---|
| omndadd.0 | ⊢ 𝐵 = (Base‘𝑀) |
| omndadd.1 | ⊢ ≤ = (le‘𝑀) |
| omndadd.2 | ⊢ + = (+g‘𝑀) |
| omndadd2d.m | ⊢ (𝜑 → 𝑀 ∈ oMnd) |
| omndadd2d.w | ⊢ (𝜑 → 𝑊 ∈ 𝐵) |
| omndadd2d.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| omndadd2d.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| omndadd2d.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| omndadd2d.1 | ⊢ (𝜑 → 𝑋 ≤ 𝑍) |
| omndadd2d.2 | ⊢ (𝜑 → 𝑌 ≤ 𝑊) |
| omndadd2rd.c | ⊢ (𝜑 → (oppg‘𝑀) ∈ oMnd) |
| Ref | Expression |
|---|---|
| omndadd2rd | ⊢ (𝜑 → (𝑋 + 𝑌) ≤ (𝑍 + 𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omndadd2d.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ oMnd) | |
| 2 | omndtos 33026 | . . 3 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Toset) | |
| 3 | tospos 18386 | . . 3 ⊢ (𝑀 ∈ Toset → 𝑀 ∈ Poset) | |
| 4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑀 ∈ Poset) |
| 5 | omndmnd 33025 | . . . . 5 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) | |
| 6 | 1, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Mnd) |
| 7 | omndadd2d.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | omndadd2d.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | omndadd.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 10 | omndadd.2 | . . . . 5 ⊢ + = (+g‘𝑀) | |
| 11 | 9, 10 | mndcl 18676 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 12 | 6, 7, 8, 11 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| 13 | omndadd2d.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝐵) | |
| 14 | 9, 10 | mndcl 18676 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 + 𝑊) ∈ 𝐵) |
| 15 | 6, 7, 13, 14 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑊) ∈ 𝐵) |
| 16 | omndadd2d.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 17 | 9, 10 | mndcl 18676 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑍 + 𝑊) ∈ 𝐵) |
| 18 | 6, 16, 13, 17 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑍 + 𝑊) ∈ 𝐵) |
| 19 | 12, 15, 18 | 3jca 1128 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) |
| 20 | omndadd2rd.c | . . 3 ⊢ (𝜑 → (oppg‘𝑀) ∈ oMnd) | |
| 21 | omndadd2d.2 | . . 3 ⊢ (𝜑 → 𝑌 ≤ 𝑊) | |
| 22 | omndadd.1 | . . . 4 ⊢ ≤ = (le‘𝑀) | |
| 23 | 9, 22, 10 | omndaddr 33028 | . . 3 ⊢ (((oppg‘𝑀) ∈ oMnd ∧ (𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 𝑌 ≤ 𝑊) → (𝑋 + 𝑌) ≤ (𝑋 + 𝑊)) |
| 24 | 20, 8, 13, 7, 21, 23 | syl131anc 1385 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) ≤ (𝑋 + 𝑊)) |
| 25 | omndadd2d.1 | . . 3 ⊢ (𝜑 → 𝑋 ≤ 𝑍) | |
| 26 | 9, 22, 10 | omndadd 33027 | . . 3 ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝑋 ≤ 𝑍) → (𝑋 + 𝑊) ≤ (𝑍 + 𝑊)) |
| 27 | 1, 7, 16, 13, 25, 26 | syl131anc 1385 | . 2 ⊢ (𝜑 → (𝑋 + 𝑊) ≤ (𝑍 + 𝑊)) |
| 28 | 9, 22 | postr 18288 | . . 3 ⊢ ((𝑀 ∈ Poset ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) → (((𝑋 + 𝑌) ≤ (𝑋 + 𝑊) ∧ (𝑋 + 𝑊) ≤ (𝑍 + 𝑊)) → (𝑋 + 𝑌) ≤ (𝑍 + 𝑊))) |
| 29 | 28 | imp 406 | . 2 ⊢ (((𝑀 ∈ Poset ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) ∧ ((𝑋 + 𝑌) ≤ (𝑋 + 𝑊) ∧ (𝑋 + 𝑊) ≤ (𝑍 + 𝑊))) → (𝑋 + 𝑌) ≤ (𝑍 + 𝑊)) |
| 30 | 4, 19, 24, 27, 29 | syl22anc 838 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ≤ (𝑍 + 𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 lecple 17234 Posetcpo 18275 Tosetctos 18382 Mndcmnd 18668 oppgcoppg 19284 oMndcomnd 33018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-dec 12657 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-ple 17247 df-poset 18281 df-toset 18383 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-oppg 19285 df-omnd 33020 |
| This theorem is referenced by: archiabllem2c 33156 |
| Copyright terms: Public domain | W3C validator |