Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndadd2rd Structured version   Visualization version   GIF version

Theorem omndadd2rd 31335
Description: In a left- and right- ordered monoid, the ordering is compatible with monoid addition. Double addition version. (Contributed by Thierry Arnoux, 2-May-2018.)
Hypotheses
Ref Expression
omndadd.0 𝐵 = (Base‘𝑀)
omndadd.1 = (le‘𝑀)
omndadd.2 + = (+g𝑀)
omndadd2d.m (𝜑𝑀 ∈ oMnd)
omndadd2d.w (𝜑𝑊𝐵)
omndadd2d.x (𝜑𝑋𝐵)
omndadd2d.y (𝜑𝑌𝐵)
omndadd2d.z (𝜑𝑍𝐵)
omndadd2d.1 (𝜑𝑋 𝑍)
omndadd2d.2 (𝜑𝑌 𝑊)
omndadd2rd.c (𝜑 → (oppg𝑀) ∈ oMnd)
Assertion
Ref Expression
omndadd2rd (𝜑 → (𝑋 + 𝑌) (𝑍 + 𝑊))

Proof of Theorem omndadd2rd
StepHypRef Expression
1 omndadd2d.m . . 3 (𝜑𝑀 ∈ oMnd)
2 omndtos 31331 . . 3 (𝑀 ∈ oMnd → 𝑀 ∈ Toset)
3 tospos 18138 . . 3 (𝑀 ∈ Toset → 𝑀 ∈ Poset)
41, 2, 33syl 18 . 2 (𝜑𝑀 ∈ Poset)
5 omndmnd 31330 . . . . 5 (𝑀 ∈ oMnd → 𝑀 ∈ Mnd)
61, 5syl 17 . . . 4 (𝜑𝑀 ∈ Mnd)
7 omndadd2d.x . . . 4 (𝜑𝑋𝐵)
8 omndadd2d.y . . . 4 (𝜑𝑌𝐵)
9 omndadd.0 . . . . 5 𝐵 = (Base‘𝑀)
10 omndadd.2 . . . . 5 + = (+g𝑀)
119, 10mndcl 18393 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
126, 7, 8, 11syl3anc 1370 . . 3 (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
13 omndadd2d.w . . . 4 (𝜑𝑊𝐵)
149, 10mndcl 18393 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑋𝐵𝑊𝐵) → (𝑋 + 𝑊) ∈ 𝐵)
156, 7, 13, 14syl3anc 1370 . . 3 (𝜑 → (𝑋 + 𝑊) ∈ 𝐵)
16 omndadd2d.z . . . 4 (𝜑𝑍𝐵)
179, 10mndcl 18393 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑍𝐵𝑊𝐵) → (𝑍 + 𝑊) ∈ 𝐵)
186, 16, 13, 17syl3anc 1370 . . 3 (𝜑 → (𝑍 + 𝑊) ∈ 𝐵)
1912, 15, 183jca 1127 . 2 (𝜑 → ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵))
20 omndadd2rd.c . . 3 (𝜑 → (oppg𝑀) ∈ oMnd)
21 omndadd2d.2 . . 3 (𝜑𝑌 𝑊)
22 omndadd.1 . . . 4 = (le‘𝑀)
239, 22, 10omndaddr 31333 . . 3 (((oppg𝑀) ∈ oMnd ∧ (𝑌𝐵𝑊𝐵𝑋𝐵) ∧ 𝑌 𝑊) → (𝑋 + 𝑌) (𝑋 + 𝑊))
2420, 8, 13, 7, 21, 23syl131anc 1382 . 2 (𝜑 → (𝑋 + 𝑌) (𝑋 + 𝑊))
25 omndadd2d.1 . . 3 (𝜑𝑋 𝑍)
269, 22, 10omndadd 31332 . . 3 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑍𝐵𝑊𝐵) ∧ 𝑋 𝑍) → (𝑋 + 𝑊) (𝑍 + 𝑊))
271, 7, 16, 13, 25, 26syl131anc 1382 . 2 (𝜑 → (𝑋 + 𝑊) (𝑍 + 𝑊))
289, 22postr 18038 . . 3 ((𝑀 ∈ Poset ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) → (((𝑋 + 𝑌) (𝑋 + 𝑊) ∧ (𝑋 + 𝑊) (𝑍 + 𝑊)) → (𝑋 + 𝑌) (𝑍 + 𝑊)))
2928imp 407 . 2 (((𝑀 ∈ Poset ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) ∧ ((𝑋 + 𝑌) (𝑋 + 𝑊) ∧ (𝑋 + 𝑊) (𝑍 + 𝑊))) → (𝑋 + 𝑌) (𝑍 + 𝑊))
304, 19, 24, 27, 29syl22anc 836 1 (𝜑 → (𝑋 + 𝑌) (𝑍 + 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  lecple 16969  Posetcpo 18025  Tosetctos 18134  Mndcmnd 18385  oppgcoppg 18949  oMndcomnd 31323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-dec 12438  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-ple 16982  df-poset 18031  df-toset 18135  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-oppg 18950  df-omnd 31325
This theorem is referenced by:  archiabllem2c  31449
  Copyright terms: Public domain W3C validator