| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omndadd2rd | Structured version Visualization version GIF version | ||
| Description: In a left- and right- ordered monoid, the ordering is compatible with monoid addition. Double addition version. (Contributed by Thierry Arnoux, 2-May-2018.) |
| Ref | Expression |
|---|---|
| omndadd.0 | ⊢ 𝐵 = (Base‘𝑀) |
| omndadd.1 | ⊢ ≤ = (le‘𝑀) |
| omndadd.2 | ⊢ + = (+g‘𝑀) |
| omndadd2d.m | ⊢ (𝜑 → 𝑀 ∈ oMnd) |
| omndadd2d.w | ⊢ (𝜑 → 𝑊 ∈ 𝐵) |
| omndadd2d.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| omndadd2d.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| omndadd2d.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| omndadd2d.1 | ⊢ (𝜑 → 𝑋 ≤ 𝑍) |
| omndadd2d.2 | ⊢ (𝜑 → 𝑌 ≤ 𝑊) |
| omndadd2rd.c | ⊢ (𝜑 → (oppg‘𝑀) ∈ oMnd) |
| Ref | Expression |
|---|---|
| omndadd2rd | ⊢ (𝜑 → (𝑋 + 𝑌) ≤ (𝑍 + 𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omndadd2d.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ oMnd) | |
| 2 | omndtos 32992 | . . 3 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Toset) | |
| 3 | tospos 18355 | . . 3 ⊢ (𝑀 ∈ Toset → 𝑀 ∈ Poset) | |
| 4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑀 ∈ Poset) |
| 5 | omndmnd 32991 | . . . . 5 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) | |
| 6 | 1, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Mnd) |
| 7 | omndadd2d.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | omndadd2d.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | omndadd.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 10 | omndadd.2 | . . . . 5 ⊢ + = (+g‘𝑀) | |
| 11 | 9, 10 | mndcl 18645 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 12 | 6, 7, 8, 11 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| 13 | omndadd2d.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝐵) | |
| 14 | 9, 10 | mndcl 18645 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 + 𝑊) ∈ 𝐵) |
| 15 | 6, 7, 13, 14 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑊) ∈ 𝐵) |
| 16 | omndadd2d.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 17 | 9, 10 | mndcl 18645 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑍 + 𝑊) ∈ 𝐵) |
| 18 | 6, 16, 13, 17 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑍 + 𝑊) ∈ 𝐵) |
| 19 | 12, 15, 18 | 3jca 1128 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) |
| 20 | omndadd2rd.c | . . 3 ⊢ (𝜑 → (oppg‘𝑀) ∈ oMnd) | |
| 21 | omndadd2d.2 | . . 3 ⊢ (𝜑 → 𝑌 ≤ 𝑊) | |
| 22 | omndadd.1 | . . . 4 ⊢ ≤ = (le‘𝑀) | |
| 23 | 9, 22, 10 | omndaddr 32994 | . . 3 ⊢ (((oppg‘𝑀) ∈ oMnd ∧ (𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 𝑌 ≤ 𝑊) → (𝑋 + 𝑌) ≤ (𝑋 + 𝑊)) |
| 24 | 20, 8, 13, 7, 21, 23 | syl131anc 1385 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) ≤ (𝑋 + 𝑊)) |
| 25 | omndadd2d.1 | . . 3 ⊢ (𝜑 → 𝑋 ≤ 𝑍) | |
| 26 | 9, 22, 10 | omndadd 32993 | . . 3 ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝑋 ≤ 𝑍) → (𝑋 + 𝑊) ≤ (𝑍 + 𝑊)) |
| 27 | 1, 7, 16, 13, 25, 26 | syl131anc 1385 | . 2 ⊢ (𝜑 → (𝑋 + 𝑊) ≤ (𝑍 + 𝑊)) |
| 28 | 9, 22 | postr 18257 | . . 3 ⊢ ((𝑀 ∈ Poset ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) → (((𝑋 + 𝑌) ≤ (𝑋 + 𝑊) ∧ (𝑋 + 𝑊) ≤ (𝑍 + 𝑊)) → (𝑋 + 𝑌) ≤ (𝑍 + 𝑊))) |
| 29 | 28 | imp 406 | . 2 ⊢ (((𝑀 ∈ Poset ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) ∧ ((𝑋 + 𝑌) ≤ (𝑋 + 𝑊) ∧ (𝑋 + 𝑊) ≤ (𝑍 + 𝑊))) → (𝑋 + 𝑌) ≤ (𝑍 + 𝑊)) |
| 30 | 4, 19, 24, 27, 29 | syl22anc 838 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ≤ (𝑍 + 𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 +gcplusg 17196 lecple 17203 Posetcpo 18244 Tosetctos 18351 Mndcmnd 18637 oppgcoppg 19253 oMndcomnd 32984 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-dec 12626 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-ple 17216 df-poset 18250 df-toset 18352 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-oppg 19254 df-omnd 32986 |
| This theorem is referenced by: archiabllem2c 33122 |
| Copyright terms: Public domain | W3C validator |