| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omndadd2rd | Structured version Visualization version GIF version | ||
| Description: In a left- and right- ordered monoid, the ordering is compatible with monoid addition. Double addition version. (Contributed by Thierry Arnoux, 2-May-2018.) |
| Ref | Expression |
|---|---|
| omndadd.0 | ⊢ 𝐵 = (Base‘𝑀) |
| omndadd.1 | ⊢ ≤ = (le‘𝑀) |
| omndadd.2 | ⊢ + = (+g‘𝑀) |
| omndadd2d.m | ⊢ (𝜑 → 𝑀 ∈ oMnd) |
| omndadd2d.w | ⊢ (𝜑 → 𝑊 ∈ 𝐵) |
| omndadd2d.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| omndadd2d.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| omndadd2d.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| omndadd2d.1 | ⊢ (𝜑 → 𝑋 ≤ 𝑍) |
| omndadd2d.2 | ⊢ (𝜑 → 𝑌 ≤ 𝑊) |
| omndadd2rd.c | ⊢ (𝜑 → (oppg‘𝑀) ∈ oMnd) |
| Ref | Expression |
|---|---|
| omndadd2rd | ⊢ (𝜑 → (𝑋 + 𝑌) ≤ (𝑍 + 𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omndadd2d.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ oMnd) | |
| 2 | omndtos 33078 | . . 3 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Toset) | |
| 3 | tospos 18435 | . . 3 ⊢ (𝑀 ∈ Toset → 𝑀 ∈ Poset) | |
| 4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑀 ∈ Poset) |
| 5 | omndmnd 33077 | . . . . 5 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) | |
| 6 | 1, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Mnd) |
| 7 | omndadd2d.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | omndadd2d.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | omndadd.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 10 | omndadd.2 | . . . . 5 ⊢ + = (+g‘𝑀) | |
| 11 | 9, 10 | mndcl 18725 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 12 | 6, 7, 8, 11 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| 13 | omndadd2d.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝐵) | |
| 14 | 9, 10 | mndcl 18725 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 + 𝑊) ∈ 𝐵) |
| 15 | 6, 7, 13, 14 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑊) ∈ 𝐵) |
| 16 | omndadd2d.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 17 | 9, 10 | mndcl 18725 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑍 + 𝑊) ∈ 𝐵) |
| 18 | 6, 16, 13, 17 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑍 + 𝑊) ∈ 𝐵) |
| 19 | 12, 15, 18 | 3jca 1128 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) |
| 20 | omndadd2rd.c | . . 3 ⊢ (𝜑 → (oppg‘𝑀) ∈ oMnd) | |
| 21 | omndadd2d.2 | . . 3 ⊢ (𝜑 → 𝑌 ≤ 𝑊) | |
| 22 | omndadd.1 | . . . 4 ⊢ ≤ = (le‘𝑀) | |
| 23 | 9, 22, 10 | omndaddr 33080 | . . 3 ⊢ (((oppg‘𝑀) ∈ oMnd ∧ (𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 𝑌 ≤ 𝑊) → (𝑋 + 𝑌) ≤ (𝑋 + 𝑊)) |
| 24 | 20, 8, 13, 7, 21, 23 | syl131anc 1385 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) ≤ (𝑋 + 𝑊)) |
| 25 | omndadd2d.1 | . . 3 ⊢ (𝜑 → 𝑋 ≤ 𝑍) | |
| 26 | 9, 22, 10 | omndadd 33079 | . . 3 ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝑋 ≤ 𝑍) → (𝑋 + 𝑊) ≤ (𝑍 + 𝑊)) |
| 27 | 1, 7, 16, 13, 25, 26 | syl131anc 1385 | . 2 ⊢ (𝜑 → (𝑋 + 𝑊) ≤ (𝑍 + 𝑊)) |
| 28 | 9, 22 | postr 18337 | . . 3 ⊢ ((𝑀 ∈ Poset ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) → (((𝑋 + 𝑌) ≤ (𝑋 + 𝑊) ∧ (𝑋 + 𝑊) ≤ (𝑍 + 𝑊)) → (𝑋 + 𝑌) ≤ (𝑍 + 𝑊))) |
| 29 | 28 | imp 406 | . 2 ⊢ (((𝑀 ∈ Poset ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) ∧ ((𝑋 + 𝑌) ≤ (𝑋 + 𝑊) ∧ (𝑋 + 𝑊) ≤ (𝑍 + 𝑊))) → (𝑋 + 𝑌) ≤ (𝑍 + 𝑊)) |
| 30 | 4, 19, 24, 27, 29 | syl22anc 838 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ≤ (𝑍 + 𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 lecple 17283 Posetcpo 18324 Tosetctos 18431 Mndcmnd 18717 oppgcoppg 19333 oMndcomnd 33070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-dec 12714 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-ple 17296 df-poset 18330 df-toset 18432 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-oppg 19334 df-omnd 33072 |
| This theorem is referenced by: archiabllem2c 33198 |
| Copyright terms: Public domain | W3C validator |