|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omndadd2rd | Structured version Visualization version GIF version | ||
| Description: In a left- and right- ordered monoid, the ordering is compatible with monoid addition. Double addition version. (Contributed by Thierry Arnoux, 2-May-2018.) | 
| Ref | Expression | 
|---|---|
| omndadd.0 | ⊢ 𝐵 = (Base‘𝑀) | 
| omndadd.1 | ⊢ ≤ = (le‘𝑀) | 
| omndadd.2 | ⊢ + = (+g‘𝑀) | 
| omndadd2d.m | ⊢ (𝜑 → 𝑀 ∈ oMnd) | 
| omndadd2d.w | ⊢ (𝜑 → 𝑊 ∈ 𝐵) | 
| omndadd2d.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| omndadd2d.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) | 
| omndadd2d.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) | 
| omndadd2d.1 | ⊢ (𝜑 → 𝑋 ≤ 𝑍) | 
| omndadd2d.2 | ⊢ (𝜑 → 𝑌 ≤ 𝑊) | 
| omndadd2rd.c | ⊢ (𝜑 → (oppg‘𝑀) ∈ oMnd) | 
| Ref | Expression | 
|---|---|
| omndadd2rd | ⊢ (𝜑 → (𝑋 + 𝑌) ≤ (𝑍 + 𝑊)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | omndadd2d.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ oMnd) | |
| 2 | omndtos 33083 | . . 3 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Toset) | |
| 3 | tospos 18466 | . . 3 ⊢ (𝑀 ∈ Toset → 𝑀 ∈ Poset) | |
| 4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑀 ∈ Poset) | 
| 5 | omndmnd 33082 | . . . . 5 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) | |
| 6 | 1, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Mnd) | 
| 7 | omndadd2d.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | omndadd2d.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | omndadd.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 10 | omndadd.2 | . . . . 5 ⊢ + = (+g‘𝑀) | |
| 11 | 9, 10 | mndcl 18756 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) | 
| 12 | 6, 7, 8, 11 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) | 
| 13 | omndadd2d.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝐵) | |
| 14 | 9, 10 | mndcl 18756 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 + 𝑊) ∈ 𝐵) | 
| 15 | 6, 7, 13, 14 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑊) ∈ 𝐵) | 
| 16 | omndadd2d.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 17 | 9, 10 | mndcl 18756 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑍 + 𝑊) ∈ 𝐵) | 
| 18 | 6, 16, 13, 17 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝑍 + 𝑊) ∈ 𝐵) | 
| 19 | 12, 15, 18 | 3jca 1128 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) | 
| 20 | omndadd2rd.c | . . 3 ⊢ (𝜑 → (oppg‘𝑀) ∈ oMnd) | |
| 21 | omndadd2d.2 | . . 3 ⊢ (𝜑 → 𝑌 ≤ 𝑊) | |
| 22 | omndadd.1 | . . . 4 ⊢ ≤ = (le‘𝑀) | |
| 23 | 9, 22, 10 | omndaddr 33085 | . . 3 ⊢ (((oppg‘𝑀) ∈ oMnd ∧ (𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 𝑌 ≤ 𝑊) → (𝑋 + 𝑌) ≤ (𝑋 + 𝑊)) | 
| 24 | 20, 8, 13, 7, 21, 23 | syl131anc 1384 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) ≤ (𝑋 + 𝑊)) | 
| 25 | omndadd2d.1 | . . 3 ⊢ (𝜑 → 𝑋 ≤ 𝑍) | |
| 26 | 9, 22, 10 | omndadd 33084 | . . 3 ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝑋 ≤ 𝑍) → (𝑋 + 𝑊) ≤ (𝑍 + 𝑊)) | 
| 27 | 1, 7, 16, 13, 25, 26 | syl131anc 1384 | . 2 ⊢ (𝜑 → (𝑋 + 𝑊) ≤ (𝑍 + 𝑊)) | 
| 28 | 9, 22 | postr 18367 | . . 3 ⊢ ((𝑀 ∈ Poset ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) → (((𝑋 + 𝑌) ≤ (𝑋 + 𝑊) ∧ (𝑋 + 𝑊) ≤ (𝑍 + 𝑊)) → (𝑋 + 𝑌) ≤ (𝑍 + 𝑊))) | 
| 29 | 28 | imp 406 | . 2 ⊢ (((𝑀 ∈ Poset ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) ∧ ((𝑋 + 𝑌) ≤ (𝑋 + 𝑊) ∧ (𝑋 + 𝑊) ≤ (𝑍 + 𝑊))) → (𝑋 + 𝑌) ≤ (𝑍 + 𝑊)) | 
| 30 | 4, 19, 24, 27, 29 | syl22anc 838 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ≤ (𝑍 + 𝑊)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 +gcplusg 17298 lecple 17305 Posetcpo 18354 Tosetctos 18462 Mndcmnd 18748 oppgcoppg 19364 oMndcomnd 33075 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-tpos 8252 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-dec 12736 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-plusg 17311 df-ple 17318 df-poset 18360 df-toset 18463 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-oppg 19365 df-omnd 33077 | 
| This theorem is referenced by: archiabllem2c 33203 | 
| Copyright terms: Public domain | W3C validator |