Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > omndadd2rd | Structured version Visualization version GIF version |
Description: In a left- and right- ordered monoid, the ordering is compatible with monoid addition. Double addition version. (Contributed by Thierry Arnoux, 2-May-2018.) |
Ref | Expression |
---|---|
omndadd.0 | ⊢ 𝐵 = (Base‘𝑀) |
omndadd.1 | ⊢ ≤ = (le‘𝑀) |
omndadd.2 | ⊢ + = (+g‘𝑀) |
omndadd2d.m | ⊢ (𝜑 → 𝑀 ∈ oMnd) |
omndadd2d.w | ⊢ (𝜑 → 𝑊 ∈ 𝐵) |
omndadd2d.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
omndadd2d.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
omndadd2d.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
omndadd2d.1 | ⊢ (𝜑 → 𝑋 ≤ 𝑍) |
omndadd2d.2 | ⊢ (𝜑 → 𝑌 ≤ 𝑊) |
omndadd2rd.c | ⊢ (𝜑 → (oppg‘𝑀) ∈ oMnd) |
Ref | Expression |
---|---|
omndadd2rd | ⊢ (𝜑 → (𝑋 + 𝑌) ≤ (𝑍 + 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omndadd2d.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ oMnd) | |
2 | omndtos 31327 | . . 3 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Toset) | |
3 | tospos 18136 | . . 3 ⊢ (𝑀 ∈ Toset → 𝑀 ∈ Poset) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑀 ∈ Poset) |
5 | omndmnd 31326 | . . . . 5 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) | |
6 | 1, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Mnd) |
7 | omndadd2d.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | omndadd2d.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | omndadd.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
10 | omndadd.2 | . . . . 5 ⊢ + = (+g‘𝑀) | |
11 | 9, 10 | mndcl 18391 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
12 | 6, 7, 8, 11 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
13 | omndadd2d.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝐵) | |
14 | 9, 10 | mndcl 18391 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 + 𝑊) ∈ 𝐵) |
15 | 6, 7, 13, 14 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑊) ∈ 𝐵) |
16 | omndadd2d.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
17 | 9, 10 | mndcl 18391 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑍 + 𝑊) ∈ 𝐵) |
18 | 6, 16, 13, 17 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝑍 + 𝑊) ∈ 𝐵) |
19 | 12, 15, 18 | 3jca 1127 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) |
20 | omndadd2rd.c | . . 3 ⊢ (𝜑 → (oppg‘𝑀) ∈ oMnd) | |
21 | omndadd2d.2 | . . 3 ⊢ (𝜑 → 𝑌 ≤ 𝑊) | |
22 | omndadd.1 | . . . 4 ⊢ ≤ = (le‘𝑀) | |
23 | 9, 22, 10 | omndaddr 31329 | . . 3 ⊢ (((oppg‘𝑀) ∈ oMnd ∧ (𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 𝑌 ≤ 𝑊) → (𝑋 + 𝑌) ≤ (𝑋 + 𝑊)) |
24 | 20, 8, 13, 7, 21, 23 | syl131anc 1382 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) ≤ (𝑋 + 𝑊)) |
25 | omndadd2d.1 | . . 3 ⊢ (𝜑 → 𝑋 ≤ 𝑍) | |
26 | 9, 22, 10 | omndadd 31328 | . . 3 ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝑋 ≤ 𝑍) → (𝑋 + 𝑊) ≤ (𝑍 + 𝑊)) |
27 | 1, 7, 16, 13, 25, 26 | syl131anc 1382 | . 2 ⊢ (𝜑 → (𝑋 + 𝑊) ≤ (𝑍 + 𝑊)) |
28 | 9, 22 | postr 18036 | . . 3 ⊢ ((𝑀 ∈ Poset ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) → (((𝑋 + 𝑌) ≤ (𝑋 + 𝑊) ∧ (𝑋 + 𝑊) ≤ (𝑍 + 𝑊)) → (𝑋 + 𝑌) ≤ (𝑍 + 𝑊))) |
29 | 28 | imp 407 | . 2 ⊢ (((𝑀 ∈ Poset ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) ∧ ((𝑋 + 𝑌) ≤ (𝑋 + 𝑊) ∧ (𝑋 + 𝑊) ≤ (𝑍 + 𝑊))) → (𝑋 + 𝑌) ≤ (𝑍 + 𝑊)) |
30 | 4, 19, 24, 27, 29 | syl22anc 836 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ≤ (𝑍 + 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 class class class wbr 5079 ‘cfv 6432 (class class class)co 7271 Basecbs 16910 +gcplusg 16960 lecple 16967 Posetcpo 18023 Tosetctos 18132 Mndcmnd 18383 oppgcoppg 18947 oMndcomnd 31319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-2nd 7825 df-tpos 8033 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-dec 12437 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-plusg 16973 df-ple 16980 df-poset 18029 df-toset 18133 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-oppg 18948 df-omnd 31321 |
This theorem is referenced by: archiabllem2c 31445 |
Copyright terms: Public domain | W3C validator |