| Step | Hyp | Ref
| Expression |
| 1 | | gsumle.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 2 | | ssid 4006 |
. . . 4
⊢ 𝐴 ⊆ 𝐴 |
| 3 | | sseq1 4009 |
. . . . . . . 8
⊢ (𝑎 = ∅ → (𝑎 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴)) |
| 4 | 3 | anbi2d 630 |
. . . . . . 7
⊢ (𝑎 = ∅ → ((𝜑 ∧ 𝑎 ⊆ 𝐴) ↔ (𝜑 ∧ ∅ ⊆ 𝐴))) |
| 5 | | reseq2 5992 |
. . . . . . . . 9
⊢ (𝑎 = ∅ → (𝐹 ↾ 𝑎) = (𝐹 ↾ ∅)) |
| 6 | 5 | oveq2d 7447 |
. . . . . . . 8
⊢ (𝑎 = ∅ → (𝑀 Σg
(𝐹 ↾ 𝑎)) = (𝑀 Σg (𝐹 ↾
∅))) |
| 7 | | reseq2 5992 |
. . . . . . . . 9
⊢ (𝑎 = ∅ → (𝐺 ↾ 𝑎) = (𝐺 ↾ ∅)) |
| 8 | 7 | oveq2d 7447 |
. . . . . . . 8
⊢ (𝑎 = ∅ → (𝑀 Σg
(𝐺 ↾ 𝑎)) = (𝑀 Σg (𝐺 ↾
∅))) |
| 9 | 6, 8 | breq12d 5156 |
. . . . . . 7
⊢ (𝑎 = ∅ → ((𝑀 Σg
(𝐹 ↾ 𝑎)) ≤ (𝑀 Σg (𝐺 ↾ 𝑎)) ↔ (𝑀 Σg (𝐹 ↾ ∅)) ≤ (𝑀 Σg
(𝐺 ↾
∅)))) |
| 10 | 4, 9 | imbi12d 344 |
. . . . . 6
⊢ (𝑎 = ∅ → (((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ 𝑎)) ≤ (𝑀 Σg (𝐺 ↾ 𝑎))) ↔ ((𝜑 ∧ ∅ ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ ∅)) ≤ (𝑀 Σg
(𝐺 ↾
∅))))) |
| 11 | | sseq1 4009 |
. . . . . . . 8
⊢ (𝑎 = 𝑒 → (𝑎 ⊆ 𝐴 ↔ 𝑒 ⊆ 𝐴)) |
| 12 | 11 | anbi2d 630 |
. . . . . . 7
⊢ (𝑎 = 𝑒 → ((𝜑 ∧ 𝑎 ⊆ 𝐴) ↔ (𝜑 ∧ 𝑒 ⊆ 𝐴))) |
| 13 | | reseq2 5992 |
. . . . . . . . 9
⊢ (𝑎 = 𝑒 → (𝐹 ↾ 𝑎) = (𝐹 ↾ 𝑒)) |
| 14 | 13 | oveq2d 7447 |
. . . . . . . 8
⊢ (𝑎 = 𝑒 → (𝑀 Σg (𝐹 ↾ 𝑎)) = (𝑀 Σg (𝐹 ↾ 𝑒))) |
| 15 | | reseq2 5992 |
. . . . . . . . 9
⊢ (𝑎 = 𝑒 → (𝐺 ↾ 𝑎) = (𝐺 ↾ 𝑒)) |
| 16 | 15 | oveq2d 7447 |
. . . . . . . 8
⊢ (𝑎 = 𝑒 → (𝑀 Σg (𝐺 ↾ 𝑎)) = (𝑀 Σg (𝐺 ↾ 𝑒))) |
| 17 | 14, 16 | breq12d 5156 |
. . . . . . 7
⊢ (𝑎 = 𝑒 → ((𝑀 Σg (𝐹 ↾ 𝑎)) ≤ (𝑀 Σg (𝐺 ↾ 𝑎)) ↔ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒)))) |
| 18 | 12, 17 | imbi12d 344 |
. . . . . 6
⊢ (𝑎 = 𝑒 → (((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ 𝑎)) ≤ (𝑀 Σg (𝐺 ↾ 𝑎))) ↔ ((𝜑 ∧ 𝑒 ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))))) |
| 19 | | sseq1 4009 |
. . . . . . . 8
⊢ (𝑎 = (𝑒 ∪ {𝑦}) → (𝑎 ⊆ 𝐴 ↔ (𝑒 ∪ {𝑦}) ⊆ 𝐴)) |
| 20 | 19 | anbi2d 630 |
. . . . . . 7
⊢ (𝑎 = (𝑒 ∪ {𝑦}) → ((𝜑 ∧ 𝑎 ⊆ 𝐴) ↔ (𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴))) |
| 21 | | reseq2 5992 |
. . . . . . . . 9
⊢ (𝑎 = (𝑒 ∪ {𝑦}) → (𝐹 ↾ 𝑎) = (𝐹 ↾ (𝑒 ∪ {𝑦}))) |
| 22 | 21 | oveq2d 7447 |
. . . . . . . 8
⊢ (𝑎 = (𝑒 ∪ {𝑦}) → (𝑀 Σg (𝐹 ↾ 𝑎)) = (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦})))) |
| 23 | | reseq2 5992 |
. . . . . . . . 9
⊢ (𝑎 = (𝑒 ∪ {𝑦}) → (𝐺 ↾ 𝑎) = (𝐺 ↾ (𝑒 ∪ {𝑦}))) |
| 24 | 23 | oveq2d 7447 |
. . . . . . . 8
⊢ (𝑎 = (𝑒 ∪ {𝑦}) → (𝑀 Σg (𝐺 ↾ 𝑎)) = (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦})))) |
| 25 | 22, 24 | breq12d 5156 |
. . . . . . 7
⊢ (𝑎 = (𝑒 ∪ {𝑦}) → ((𝑀 Σg (𝐹 ↾ 𝑎)) ≤ (𝑀 Σg (𝐺 ↾ 𝑎)) ↔ (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) ≤ (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))))) |
| 26 | 20, 25 | imbi12d 344 |
. . . . . 6
⊢ (𝑎 = (𝑒 ∪ {𝑦}) → (((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ 𝑎)) ≤ (𝑀 Σg (𝐺 ↾ 𝑎))) ↔ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) ≤ (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦})))))) |
| 27 | | sseq1 4009 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝑎 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
| 28 | 27 | anbi2d 630 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → ((𝜑 ∧ 𝑎 ⊆ 𝐴) ↔ (𝜑 ∧ 𝐴 ⊆ 𝐴))) |
| 29 | | reseq2 5992 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → (𝐹 ↾ 𝑎) = (𝐹 ↾ 𝐴)) |
| 30 | 29 | oveq2d 7447 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝑀 Σg (𝐹 ↾ 𝑎)) = (𝑀 Σg (𝐹 ↾ 𝐴))) |
| 31 | | reseq2 5992 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → (𝐺 ↾ 𝑎) = (𝐺 ↾ 𝐴)) |
| 32 | 31 | oveq2d 7447 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝑀 Σg (𝐺 ↾ 𝑎)) = (𝑀 Σg (𝐺 ↾ 𝐴))) |
| 33 | 30, 32 | breq12d 5156 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → ((𝑀 Σg (𝐹 ↾ 𝑎)) ≤ (𝑀 Σg (𝐺 ↾ 𝑎)) ↔ (𝑀 Σg (𝐹 ↾ 𝐴)) ≤ (𝑀 Σg (𝐺 ↾ 𝐴)))) |
| 34 | 28, 33 | imbi12d 344 |
. . . . . 6
⊢ (𝑎 = 𝐴 → (((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ 𝑎)) ≤ (𝑀 Σg (𝐺 ↾ 𝑎))) ↔ ((𝜑 ∧ 𝐴 ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ 𝐴)) ≤ (𝑀 Σg (𝐺 ↾ 𝐴))))) |
| 35 | | gsumle.m |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ oMnd) |
| 36 | | omndtos 33082 |
. . . . . . . . . 10
⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Toset) |
| 37 | | tospos 18465 |
. . . . . . . . . 10
⊢ (𝑀 ∈ Toset → 𝑀 ∈ Poset) |
| 38 | 35, 36, 37 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ Poset) |
| 39 | | res0 6001 |
. . . . . . . . . . . 12
⊢ (𝐹 ↾ ∅) =
∅ |
| 40 | 39 | oveq2i 7442 |
. . . . . . . . . . 11
⊢ (𝑀 Σg
(𝐹 ↾ ∅)) =
(𝑀
Σg ∅) |
| 41 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(0g‘𝑀) = (0g‘𝑀) |
| 42 | 41 | gsum0 18697 |
. . . . . . . . . . 11
⊢ (𝑀 Σg
∅) = (0g‘𝑀) |
| 43 | 40, 42 | eqtri 2765 |
. . . . . . . . . 10
⊢ (𝑀 Σg
(𝐹 ↾ ∅)) =
(0g‘𝑀) |
| 44 | | omndmnd 33081 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) |
| 45 | | gsumle.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝑀) |
| 46 | 45, 41 | mndidcl 18762 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ Mnd →
(0g‘𝑀)
∈ 𝐵) |
| 47 | 35, 44, 46 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → (0g‘𝑀) ∈ 𝐵) |
| 48 | 43, 47 | eqeltrid 2845 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 Σg (𝐹 ↾ ∅)) ∈ 𝐵) |
| 49 | | gsumle.l |
. . . . . . . . . 10
⊢ ≤ =
(le‘𝑀) |
| 50 | 45, 49 | posref 18364 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Poset ∧ (𝑀 Σg
(𝐹 ↾ ∅)) ∈
𝐵) → (𝑀 Σg
(𝐹 ↾ ∅)) ≤ (𝑀 Σg
(𝐹 ↾
∅))) |
| 51 | 38, 48, 50 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 Σg (𝐹 ↾ ∅)) ≤ (𝑀 Σg
(𝐹 ↾
∅))) |
| 52 | | res0 6001 |
. . . . . . . . . 10
⊢ (𝐺 ↾ ∅) =
∅ |
| 53 | 39, 52 | eqtr4i 2768 |
. . . . . . . . 9
⊢ (𝐹 ↾ ∅) = (𝐺 ↾
∅) |
| 54 | 53 | oveq2i 7442 |
. . . . . . . 8
⊢ (𝑀 Σg
(𝐹 ↾ ∅)) =
(𝑀
Σg (𝐺 ↾ ∅)) |
| 55 | 51, 54 | breqtrdi 5184 |
. . . . . . 7
⊢ (𝜑 → (𝑀 Σg (𝐹 ↾ ∅)) ≤ (𝑀 Σg
(𝐺 ↾
∅))) |
| 56 | 55 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ∅ ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ ∅)) ≤ (𝑀 Σg
(𝐺 ↾
∅))) |
| 57 | | ssun1 4178 |
. . . . . . . . . 10
⊢ 𝑒 ⊆ (𝑒 ∪ {𝑦}) |
| 58 | | sstr2 3990 |
. . . . . . . . . 10
⊢ (𝑒 ⊆ (𝑒 ∪ {𝑦}) → ((𝑒 ∪ {𝑦}) ⊆ 𝐴 → 𝑒 ⊆ 𝐴)) |
| 59 | 57, 58 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝑒 ∪ {𝑦}) ⊆ 𝐴 → 𝑒 ⊆ 𝐴) |
| 60 | 59 | anim2i 617 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝜑 ∧ 𝑒 ⊆ 𝐴)) |
| 61 | 60 | imim1i 63 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑒 ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒)))) |
| 62 | | simplr 769 |
. . . . . . . . . 10
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴)) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴)) |
| 63 | | simpllr 776 |
. . . . . . . . . 10
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴)) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → ¬ 𝑦 ∈ 𝑒) |
| 64 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴)) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) |
| 65 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(+g‘𝑀) = (+g‘𝑀) |
| 66 | 35 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → 𝑀 ∈ oMnd) |
| 67 | | gsumle.g |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
| 68 | 67 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝐺:𝐴⟶𝐵) |
| 69 | | simplr 769 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝑒 ∪ {𝑦}) ⊆ 𝐴) |
| 70 | | ssun2 4179 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑦} ⊆ (𝑒 ∪ {𝑦}) |
| 71 | | vex 3484 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑦 ∈ V |
| 72 | 71 | snss 4785 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (𝑒 ∪ {𝑦}) ↔ {𝑦} ⊆ (𝑒 ∪ {𝑦})) |
| 73 | 70, 72 | mpbir 231 |
. . . . . . . . . . . . . . . 16
⊢ 𝑦 ∈ (𝑒 ∪ {𝑦}) |
| 74 | 73 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝑦 ∈ (𝑒 ∪ {𝑦})) |
| 75 | 69, 74 | sseldd 3984 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝑦 ∈ 𝐴) |
| 76 | 68, 75 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝐺‘𝑦) ∈ 𝐵) |
| 77 | 76 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝐺‘𝑦) ∈ 𝐵) |
| 78 | | gsumle.n |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ CMnd) |
| 79 | 78 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝑀 ∈ CMnd) |
| 80 | | vex 3484 |
. . . . . . . . . . . . . . 15
⊢ 𝑒 ∈ V |
| 81 | 80 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝑒 ∈ V) |
| 82 | | gsumle.f |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 83 | 82 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝐹:𝐴⟶𝐵) |
| 84 | 57, 69 | sstrid 3995 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝑒 ⊆ 𝐴) |
| 85 | 83, 84 | fssresd 6775 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝐹 ↾ 𝑒):𝑒⟶𝐵) |
| 86 | 1 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝐴 ∈ Fin) |
| 87 | | fvexd 6921 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (0g‘𝑀) ∈ V) |
| 88 | 83, 86, 87 | fdmfifsupp 9415 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝐹 finSupp (0g‘𝑀)) |
| 89 | 88, 87 | fsuppres 9433 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝐹 ↾ 𝑒) finSupp (0g‘𝑀)) |
| 90 | 45, 41, 79, 81, 85, 89 | gsumcl 19933 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝑀 Σg (𝐹 ↾ 𝑒)) ∈ 𝐵) |
| 91 | 90 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝑀 Σg (𝐹 ↾ 𝑒)) ∈ 𝐵) |
| 92 | 83, 75 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝐹‘𝑦) ∈ 𝐵) |
| 93 | 92 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝐹‘𝑦) ∈ 𝐵) |
| 94 | 68, 84 | fssresd 6775 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝐺 ↾ 𝑒):𝑒⟶𝐵) |
| 95 | | ssfi 9213 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ Fin ∧ 𝑒 ⊆ 𝐴) → 𝑒 ∈ Fin) |
| 96 | 86, 84, 95 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝑒 ∈ Fin) |
| 97 | 94, 96, 87 | fdmfifsupp 9415 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝐺 ↾ 𝑒) finSupp (0g‘𝑀)) |
| 98 | 45, 41, 79, 81, 94, 97 | gsumcl 19933 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝑀 Σg (𝐺 ↾ 𝑒)) ∈ 𝐵) |
| 99 | 98 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝑀 Σg (𝐺 ↾ 𝑒)) ∈ 𝐵) |
| 100 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) |
| 101 | | simpll 767 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝜑) |
| 102 | | gsumle.c |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 ∘r ≤ 𝐺) |
| 103 | 102 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝐹 ∘r ≤ 𝐺) |
| 104 | 82 | ffnd 6737 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 105 | 67 | ffnd 6737 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺 Fn 𝐴) |
| 106 | | inidm 4227 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| 107 | | eqidd 2738 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) = (𝐹‘𝑦)) |
| 108 | | eqidd 2738 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐺‘𝑦) = (𝐺‘𝑦)) |
| 109 | 104, 105,
1, 1, 106, 107, 108 | ofrval 7709 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐹 ∘r ≤ 𝐺 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ≤ (𝐺‘𝑦)) |
| 110 | 101, 103,
75, 109 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝐹‘𝑦) ≤ (𝐺‘𝑦)) |
| 111 | 110 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝐹‘𝑦) ≤ (𝐺‘𝑦)) |
| 112 | 79 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → 𝑀 ∈ CMnd) |
| 113 | 45, 49, 65, 66, 77, 91, 93, 99, 100, 111, 112 | omndadd2d 33085 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → ((𝑀 Σg (𝐹 ↾ 𝑒))(+g‘𝑀)(𝐹‘𝑦)) ≤ ((𝑀 Σg (𝐺 ↾ 𝑒))(+g‘𝑀)(𝐺‘𝑦))) |
| 114 | 96 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → 𝑒 ∈ Fin) |
| 115 | 82 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑧 ∈ 𝑒) → 𝐹:𝐴⟶𝐵) |
| 116 | | simplr 769 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑧 ∈ 𝑒) → (𝑒 ∪ {𝑦}) ⊆ 𝐴) |
| 117 | | elun1 4182 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ 𝑒 → 𝑧 ∈ (𝑒 ∪ {𝑦})) |
| 118 | 117 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑧 ∈ 𝑒) → 𝑧 ∈ (𝑒 ∪ {𝑦})) |
| 119 | 116, 118 | sseldd 3984 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑧 ∈ 𝑒) → 𝑧 ∈ 𝐴) |
| 120 | 115, 119 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑧 ∈ 𝑒) → (𝐹‘𝑧) ∈ 𝐵) |
| 121 | 120 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑧 ∈ 𝑒 → (𝐹‘𝑧) ∈ 𝐵)) |
| 122 | 121 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝑧 ∈ 𝑒 → (𝐹‘𝑧) ∈ 𝐵)) |
| 123 | 122 | imp 406 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) ∧ 𝑧 ∈ 𝑒) → (𝐹‘𝑧) ∈ 𝐵) |
| 124 | 71 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → 𝑦 ∈ V) |
| 125 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → ¬ 𝑦 ∈ 𝑒) |
| 126 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑦 → (𝐹‘𝑧) = (𝐹‘𝑦)) |
| 127 | 45, 65, 112, 114, 123, 124, 125, 93, 126 | gsumunsn 19978 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐹‘𝑧))) = ((𝑀 Σg (𝑧 ∈ 𝑒 ↦ (𝐹‘𝑧)))(+g‘𝑀)(𝐹‘𝑦))) |
| 128 | 83, 69 | feqresmpt 6978 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝐹 ↾ (𝑒 ∪ {𝑦})) = (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐹‘𝑧))) |
| 129 | 128 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) = (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐹‘𝑧)))) |
| 130 | 83, 84 | feqresmpt 6978 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝐹 ↾ 𝑒) = (𝑧 ∈ 𝑒 ↦ (𝐹‘𝑧))) |
| 131 | 130 | oveq2d 7447 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝑀 Σg (𝐹 ↾ 𝑒)) = (𝑀 Σg (𝑧 ∈ 𝑒 ↦ (𝐹‘𝑧)))) |
| 132 | 131 | oveq1d 7446 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → ((𝑀 Σg (𝐹 ↾ 𝑒))(+g‘𝑀)(𝐹‘𝑦)) = ((𝑀 Σg (𝑧 ∈ 𝑒 ↦ (𝐹‘𝑧)))(+g‘𝑀)(𝐹‘𝑦))) |
| 133 | 129, 132 | eqeq12d 2753 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → ((𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg (𝐹 ↾ 𝑒))(+g‘𝑀)(𝐹‘𝑦)) ↔ (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐹‘𝑧))) = ((𝑀 Σg (𝑧 ∈ 𝑒 ↦ (𝐹‘𝑧)))(+g‘𝑀)(𝐹‘𝑦)))) |
| 134 | 133 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → ((𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg (𝐹 ↾ 𝑒))(+g‘𝑀)(𝐹‘𝑦)) ↔ (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐹‘𝑧))) = ((𝑀 Σg (𝑧 ∈ 𝑒 ↦ (𝐹‘𝑧)))(+g‘𝑀)(𝐹‘𝑦)))) |
| 135 | 127, 134 | mpbird 257 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg (𝐹 ↾ 𝑒))(+g‘𝑀)(𝐹‘𝑦))) |
| 136 | 67 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → 𝐺:𝐴⟶𝐵) |
| 137 | 136 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ 𝑧 ∈ 𝑒) → 𝐺:𝐴⟶𝐵) |
| 138 | 119 | adantlr 715 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ 𝑧 ∈ 𝑒) → 𝑧 ∈ 𝐴) |
| 139 | 137, 138 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ 𝑧 ∈ 𝑒) → (𝐺‘𝑧) ∈ 𝐵) |
| 140 | 71 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝑦 ∈ V) |
| 141 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → ¬ 𝑦 ∈ 𝑒) |
| 142 | | fveq2 6906 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑦 → (𝐺‘𝑧) = (𝐺‘𝑦)) |
| 143 | 45, 65, 79, 96, 139, 140, 141, 76, 142 | gsumunsn 19978 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐺‘𝑧))) = ((𝑀 Σg (𝑧 ∈ 𝑒 ↦ (𝐺‘𝑧)))(+g‘𝑀)(𝐺‘𝑦))) |
| 144 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑒 ∪ {𝑦}) ⊆ 𝐴) |
| 145 | 136, 144 | feqresmpt 6978 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝐺 ↾ (𝑒 ∪ {𝑦})) = (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐺‘𝑧))) |
| 146 | 145 | oveq2d 7447 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐺‘𝑧)))) |
| 147 | | resabs1 6024 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑒 ⊆ (𝑒 ∪ {𝑦}) → ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒) = (𝐺 ↾ 𝑒)) |
| 148 | 57, 147 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒) = (𝐺 ↾ 𝑒)) |
| 149 | 59 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → 𝑒 ⊆ 𝐴) |
| 150 | 136, 149 | feqresmpt 6978 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝐺 ↾ 𝑒) = (𝑧 ∈ 𝑒 ↦ (𝐺‘𝑧))) |
| 151 | 148, 150 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒) = (𝑧 ∈ 𝑒 ↦ (𝐺‘𝑧))) |
| 152 | 151 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒)) = (𝑀 Σg (𝑧 ∈ 𝑒 ↦ (𝐺‘𝑧)))) |
| 153 | | resabs1 6024 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ({𝑦} ⊆ (𝑒 ∪ {𝑦}) → ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}) = (𝐺 ↾ {𝑦})) |
| 154 | 70, 153 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}) = (𝐺 ↾ {𝑦})) |
| 155 | 70, 144 | sstrid 3995 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → {𝑦} ⊆ 𝐴) |
| 156 | 136, 155 | feqresmpt 6978 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝐺 ↾ {𝑦}) = (𝑧 ∈ {𝑦} ↦ (𝐺‘𝑧))) |
| 157 | 154, 156 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}) = (𝑧 ∈ {𝑦} ↦ (𝐺‘𝑧))) |
| 158 | 157 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦})) = (𝑀 Σg (𝑧 ∈ {𝑦} ↦ (𝐺‘𝑧)))) |
| 159 | 35, 44 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑀 ∈ Mnd) |
| 160 | 159 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → 𝑀 ∈ Mnd) |
| 161 | 71 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 ∈ V) |
| 162 | 73 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 ∈ (𝑒 ∪ {𝑦})) |
| 163 | 144, 162 | sseldd 3984 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 ∈ 𝐴) |
| 164 | 136, 163 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝐺‘𝑦) ∈ 𝐵) |
| 165 | 142 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑧 = 𝑦) → (𝐺‘𝑧) = (𝐺‘𝑦)) |
| 166 | 45, 160, 161, 164, 165 | gsumsnd 19970 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝑧 ∈ {𝑦} ↦ (𝐺‘𝑧))) = (𝐺‘𝑦)) |
| 167 | 158, 166 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦})) = (𝐺‘𝑦)) |
| 168 | 152, 167 | oveq12d 7449 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒))(+g‘𝑀)(𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}))) = ((𝑀 Σg (𝑧 ∈ 𝑒 ↦ (𝐺‘𝑧)))(+g‘𝑀)(𝐺‘𝑦))) |
| 169 | 146, 168 | eqeq12d 2753 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒))(+g‘𝑀)(𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}))) ↔ (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐺‘𝑧))) = ((𝑀 Σg (𝑧 ∈ 𝑒 ↦ (𝐺‘𝑧)))(+g‘𝑀)(𝐺‘𝑦)))) |
| 170 | 169 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → ((𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒))(+g‘𝑀)(𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}))) ↔ (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐺‘𝑧))) = ((𝑀 Σg (𝑧 ∈ 𝑒 ↦ (𝐺‘𝑧)))(+g‘𝑀)(𝐺‘𝑦)))) |
| 171 | 143, 170 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒))(+g‘𝑀)(𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦})))) |
| 172 | 57, 147 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒) = (𝐺 ↾ 𝑒) |
| 173 | 172 | oveq2i 7442 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 Σg
((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒)) = (𝑀 Σg (𝐺 ↾ 𝑒)) |
| 174 | 70, 153 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}) = (𝐺 ↾ {𝑦}) |
| 175 | 174 | oveq2i 7442 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 Σg
((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦})) = (𝑀 Σg (𝐺 ↾ {𝑦})) |
| 176 | 173, 175 | oveq12i 7443 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 Σg
((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒))(+g‘𝑀)(𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}))) = ((𝑀 Σg (𝐺 ↾ 𝑒))(+g‘𝑀)(𝑀 Σg (𝐺 ↾ {𝑦}))) |
| 177 | 171, 176 | eqtrdi 2793 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg (𝐺 ↾ 𝑒))(+g‘𝑀)(𝑀 Σg (𝐺 ↾ {𝑦})))) |
| 178 | 70, 69 | sstrid 3995 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → {𝑦} ⊆ 𝐴) |
| 179 | 68, 178 | feqresmpt 6978 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝐺 ↾ {𝑦}) = (𝑥 ∈ {𝑦} ↦ (𝐺‘𝑥))) |
| 180 | 179 | oveq2d 7447 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝑀 Σg (𝐺 ↾ {𝑦})) = (𝑀 Σg (𝑥 ∈ {𝑦} ↦ (𝐺‘𝑥)))) |
| 181 | | cmnmnd 19815 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ CMnd → 𝑀 ∈ Mnd) |
| 182 | 79, 181 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝑀 ∈ Mnd) |
| 183 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (𝐺‘𝑥) = (𝐺‘𝑦)) |
| 184 | 45, 183 | gsumsn 19972 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ Mnd ∧ 𝑦 ∈ V ∧ (𝐺‘𝑦) ∈ 𝐵) → (𝑀 Σg (𝑥 ∈ {𝑦} ↦ (𝐺‘𝑥))) = (𝐺‘𝑦)) |
| 185 | 182, 140,
76, 184 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝑀 Σg (𝑥 ∈ {𝑦} ↦ (𝐺‘𝑥))) = (𝐺‘𝑦)) |
| 186 | 180, 185 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝑀 Σg (𝐺 ↾ {𝑦})) = (𝐺‘𝑦)) |
| 187 | 186 | oveq2d 7447 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → ((𝑀 Σg (𝐺 ↾ 𝑒))(+g‘𝑀)(𝑀 Σg (𝐺 ↾ {𝑦}))) = ((𝑀 Σg (𝐺 ↾ 𝑒))(+g‘𝑀)(𝐺‘𝑦))) |
| 188 | 177, 187 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg (𝐺 ↾ 𝑒))(+g‘𝑀)(𝐺‘𝑦))) |
| 189 | 188 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg (𝐺 ↾ 𝑒))(+g‘𝑀)(𝐺‘𝑦))) |
| 190 | 113, 135,
189 | 3brtr4d 5175 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) ≤ (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦})))) |
| 191 | 62, 63, 64, 190 | syl21anc 838 |
. . . . . . . . 9
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴)) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) ≤ (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦})))) |
| 192 | 191 | exp31 419 |
. . . . . . . 8
⊢ ((𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒) → ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒)) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) ≤ (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦})))))) |
| 193 | 192 | a2d 29 |
. . . . . . 7
⊢ ((𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒) → (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) ≤ (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦})))))) |
| 194 | 61, 193 | syl5 34 |
. . . . . 6
⊢ ((𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒) → (((𝜑 ∧ 𝑒 ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) ≤ (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦})))))) |
| 195 | 10, 18, 26, 34, 56, 194 | findcard2s 9205 |
. . . . 5
⊢ (𝐴 ∈ Fin → ((𝜑 ∧ 𝐴 ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ 𝐴)) ≤ (𝑀 Σg (𝐺 ↾ 𝐴)))) |
| 196 | 195 | imp 406 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ (𝜑 ∧ 𝐴 ⊆ 𝐴)) → (𝑀 Σg (𝐹 ↾ 𝐴)) ≤ (𝑀 Σg (𝐺 ↾ 𝐴))) |
| 197 | 2, 196 | mpanr2 704 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ 𝜑) → (𝑀 Σg (𝐹 ↾ 𝐴)) ≤ (𝑀 Σg (𝐺 ↾ 𝐴))) |
| 198 | 1, 197 | mpancom 688 |
. 2
⊢ (𝜑 → (𝑀 Σg (𝐹 ↾ 𝐴)) ≤ (𝑀 Σg (𝐺 ↾ 𝐴))) |
| 199 | | fnresdm 6687 |
. . . 4
⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
| 200 | 104, 199 | syl 17 |
. . 3
⊢ (𝜑 → (𝐹 ↾ 𝐴) = 𝐹) |
| 201 | 200 | oveq2d 7447 |
. 2
⊢ (𝜑 → (𝑀 Σg (𝐹 ↾ 𝐴)) = (𝑀 Σg 𝐹)) |
| 202 | | fnresdm 6687 |
. . . 4
⊢ (𝐺 Fn 𝐴 → (𝐺 ↾ 𝐴) = 𝐺) |
| 203 | 105, 202 | syl 17 |
. . 3
⊢ (𝜑 → (𝐺 ↾ 𝐴) = 𝐺) |
| 204 | 203 | oveq2d 7447 |
. 2
⊢ (𝜑 → (𝑀 Σg (𝐺 ↾ 𝐴)) = (𝑀 Σg 𝐺)) |
| 205 | 198, 201,
204 | 3brtr3d 5174 |
1
⊢ (𝜑 → (𝑀 Σg 𝐹) ≤ (𝑀 Σg 𝐺)) |