MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onpwsuc Structured version   Visualization version   GIF version

Theorem onpwsuc 7793
Description: The collection of ordinal numbers in the power set of an ordinal number is its successor. (Contributed by NM, 19-Oct-2004.)
Assertion
Ref Expression
onpwsuc (𝐴 ∈ On → (𝒫 𝐴 ∩ On) = suc 𝐴)

Proof of Theorem onpwsuc
StepHypRef Expression
1 eloni 6344 . 2 (𝐴 ∈ On → Ord 𝐴)
2 ordpwsuc 7792 . 2 (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴)
31, 2syl 17 1 (𝐴 ∈ On → (𝒫 𝐴 ∩ On) = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3915  𝒫 cpw 4565  Ord word 6333  Oncon0 6334  suc csuc 6336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-tr 5217  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-ord 6337  df-on 6338  df-suc 6340
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator