| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsstopbas | Structured version Visualization version GIF version | ||
| Description: The class of ordinal numbers is a subclass of the class of topological bases. (Contributed by Chen-Pang He, 8-Oct-2015.) |
| Ref | Expression |
|---|---|
| onsstopbas | ⊢ On ⊆ TopBases |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ontopbas 36429 | . 2 ⊢ (𝑥 ∈ On → 𝑥 ∈ TopBases) | |
| 2 | 1 | ssriv 3987 | 1 ⊢ On ⊆ TopBases |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3951 Oncon0 6384 TopBasesctb 22952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-tr 5260 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-ord 6387 df-on 6388 df-bases 22953 |
| This theorem is referenced by: onpsstopbas 36431 |
| Copyright terms: Public domain | W3C validator |