Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsstopbas Structured version   Visualization version   GIF version

Theorem onsstopbas 35314
Description: The class of ordinal numbers is a subclass of the class of topological bases. (Contributed by Chen-Pang He, 8-Oct-2015.)
Assertion
Ref Expression
onsstopbas On ⊆ TopBases

Proof of Theorem onsstopbas
StepHypRef Expression
1 ontopbas 35313 . 2 (𝑥 ∈ On → 𝑥 ∈ TopBases)
21ssriv 3987 1 On ⊆ TopBases
Colors of variables: wff setvar class
Syntax hints:  wss 3949  Oncon0 6365  TopBasesctb 22448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-ord 6368  df-on 6369  df-bases 22449
This theorem is referenced by:  onpsstopbas  35315
  Copyright terms: Public domain W3C validator