Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opabresexd Structured version   Visualization version   GIF version

Theorem opabresexd 45049
Description: A collection of ordered pairs, the second component being a function, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 15-Jan-2021.)
Hypotheses
Ref Expression
opabresexd.x ((𝜑𝑥𝑅𝑦) → 𝑥𝐶)
opabresexd.y ((𝜑𝑥𝑅𝑦) → 𝑦:𝐴𝐵)
opabresexd.a ((𝜑𝑥𝐶) → 𝐴𝑈)
opabresexd.b ((𝜑𝑥𝐶) → 𝐵𝑉)
opabresexd.c (𝜑𝐶𝑊)
Assertion
Ref Expression
opabresexd (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝜓)} ∈ V)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥)   𝑅(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem opabresexd
StepHypRef Expression
1 opabresexd.x . 2 ((𝜑𝑥𝑅𝑦) → 𝑥𝐶)
2 opabresexd.y . 2 ((𝜑𝑥𝑅𝑦) → 𝑦:𝐴𝐵)
3 opabresexd.a . . 3 ((𝜑𝑥𝐶) → 𝐴𝑈)
4 opabresexd.b . . 3 ((𝜑𝑥𝐶) → 𝐵𝑉)
5 mapex 8670 . . 3 ((𝐴𝑈𝐵𝑉) → {𝑦𝑦:𝐴𝐵} ∈ V)
63, 4, 5syl2anc 584 . 2 ((𝜑𝑥𝐶) → {𝑦𝑦:𝐴𝐵} ∈ V)
7 opabresexd.c . 2 (𝜑𝐶𝑊)
81, 2, 6, 7opabresex0d 45047 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝜓)} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2105  {cab 2713  Vcvv 3440   class class class wbr 5086  {copab 5148  wf 6461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3442  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-xp 5613  df-rel 5614  df-cnv 5615  df-dm 5617  df-rn 5618  df-fun 6467  df-fn 6468  df-f 6469
This theorem is referenced by:  opabbrfexd  45050
  Copyright terms: Public domain W3C validator