Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opabresexd Structured version   Visualization version   GIF version

Theorem opabresexd 47258
Description: A collection of ordered pairs, the second component being a function, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 15-Jan-2021.)
Hypotheses
Ref Expression
opabresexd.x ((𝜑𝑥𝑅𝑦) → 𝑥𝐶)
opabresexd.y ((𝜑𝑥𝑅𝑦) → 𝑦:𝐴𝐵)
opabresexd.a ((𝜑𝑥𝐶) → 𝐴𝑈)
opabresexd.b ((𝜑𝑥𝐶) → 𝐵𝑉)
opabresexd.c (𝜑𝐶𝑊)
Assertion
Ref Expression
opabresexd (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝜓)} ∈ V)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥)   𝑅(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem opabresexd
StepHypRef Expression
1 opabresexd.x . 2 ((𝜑𝑥𝑅𝑦) → 𝑥𝐶)
2 opabresexd.y . 2 ((𝜑𝑥𝑅𝑦) → 𝑦:𝐴𝐵)
3 opabresexd.a . . 3 ((𝜑𝑥𝐶) → 𝐴𝑈)
4 opabresexd.b . . 3 ((𝜑𝑥𝐶) → 𝐵𝑉)
5 mapex 7926 . . 3 ((𝐴𝑈𝐵𝑉) → {𝑦𝑦:𝐴𝐵} ∈ V)
63, 4, 5syl2anc 584 . 2 ((𝜑𝑥𝐶) → {𝑦𝑦:𝐴𝐵} ∈ V)
7 opabresexd.c . 2 (𝜑𝐶𝑊)
81, 2, 6, 7opabresex0d 47256 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝜓)} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  {cab 2708  Vcvv 3455   class class class wbr 5115  {copab 5177  wf 6515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-xp 5652  df-rel 5653  df-cnv 5654  df-dm 5656  df-rn 5657  df-fun 6521  df-fn 6522  df-f 6523
This theorem is referenced by:  opabbrfexd  47259
  Copyright terms: Public domain W3C validator