Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opabresexd | Structured version Visualization version GIF version |
Description: A collection of ordered pairs, the second component being a function, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 15-Jan-2021.) |
Ref | Expression |
---|---|
opabresexd.x | ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) |
opabresexd.y | ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑦:𝐴⟶𝐵) |
opabresexd.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐴 ∈ 𝑈) |
opabresexd.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝑉) |
opabresexd.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
opabresexd | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabresexd.x | . 2 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) | |
2 | opabresexd.y | . 2 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑦:𝐴⟶𝐵) | |
3 | opabresexd.a | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐴 ∈ 𝑈) | |
4 | opabresexd.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝑉) | |
5 | mapex 8670 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → {𝑦 ∣ 𝑦:𝐴⟶𝐵} ∈ V) | |
6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {𝑦 ∣ 𝑦:𝐴⟶𝐵} ∈ V) |
7 | opabresexd.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
8 | 1, 2, 6, 7 | opabresex0d 45047 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 {cab 2713 Vcvv 3440 class class class wbr 5086 {copab 5148 ⟶wf 6461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-xp 5613 df-rel 5614 df-cnv 5615 df-dm 5617 df-rn 5618 df-fun 6467 df-fn 6468 df-f 6469 |
This theorem is referenced by: opabbrfexd 45050 |
Copyright terms: Public domain | W3C validator |