| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opabresexd | Structured version Visualization version GIF version | ||
| Description: A collection of ordered pairs, the second component being a function, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 15-Jan-2021.) |
| Ref | Expression |
|---|---|
| opabresexd.x | ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) |
| opabresexd.y | ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑦:𝐴⟶𝐵) |
| opabresexd.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐴 ∈ 𝑈) |
| opabresexd.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝑉) |
| opabresexd.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| opabresexd | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabresexd.x | . 2 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) | |
| 2 | opabresexd.y | . 2 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑦:𝐴⟶𝐵) | |
| 3 | opabresexd.a | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐴 ∈ 𝑈) | |
| 4 | opabresexd.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝑉) | |
| 5 | mapex 7926 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → {𝑦 ∣ 𝑦:𝐴⟶𝐵} ∈ V) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {𝑦 ∣ 𝑦:𝐴⟶𝐵} ∈ V) |
| 7 | opabresexd.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 8 | 1, 2, 6, 7 | opabresex0d 47256 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {cab 2708 Vcvv 3455 class class class wbr 5115 {copab 5177 ⟶wf 6515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-xp 5652 df-rel 5653 df-cnv 5654 df-dm 5656 df-rn 5657 df-fun 6521 df-fn 6522 df-f 6523 |
| This theorem is referenced by: opabbrfexd 47259 |
| Copyright terms: Public domain | W3C validator |