MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqg0subg Structured version   Visualization version   GIF version

Theorem eqg0subg 19236
Description: The coset equivalence relation for the trivial (zero) subgroup of a group is the identity relation restricted to the base set of the group. (Contributed by AV, 25-Feb-2025.)
Hypotheses
Ref Expression
eqg0subg.0 0 = (0g𝐺)
eqg0subg.s 𝑆 = { 0 }
eqg0subg.b 𝐵 = (Base‘𝐺)
eqg0subg.r 𝑅 = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
eqg0subg (𝐺 ∈ Grp → 𝑅 = ( I ↾ 𝐵))

Proof of Theorem eqg0subg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqg0subg.s . . . 4 𝑆 = { 0 }
2 eqg0subg.0 . . . . . 6 0 = (0g𝐺)
320subg 19191 . . . . 5 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
4 eqg0subg.b . . . . . 6 𝐵 = (Base‘𝐺)
54subgss 19167 . . . . 5 ({ 0 } ∈ (SubGrp‘𝐺) → { 0 } ⊆ 𝐵)
63, 5syl 17 . . . 4 (𝐺 ∈ Grp → { 0 } ⊆ 𝐵)
71, 6eqsstrid 4057 . . 3 (𝐺 ∈ Grp → 𝑆𝐵)
8 eqid 2740 . . . 4 (invg𝐺) = (invg𝐺)
9 eqid 2740 . . . 4 (+g𝐺) = (+g𝐺)
10 eqg0subg.r . . . 4 𝑅 = (𝐺 ~QG 𝑆)
114, 8, 9, 10eqgfval 19216 . . 3 ((𝐺 ∈ Grp ∧ 𝑆𝐵) → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
127, 11mpdan 686 . 2 (𝐺 ∈ Grp → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
13 opabresid 6079 . . 3 ( I ↾ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)}
14 simpl 482 . . . . . . 7 ((𝑥𝐵𝑦 = 𝑥) → 𝑥𝐵)
15 eleq1w 2827 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
1615equcoms 2019 . . . . . . . 8 (𝑦 = 𝑥 → (𝑥𝐵𝑦𝐵))
1716biimpac 478 . . . . . . 7 ((𝑥𝐵𝑦 = 𝑥) → 𝑦𝐵)
18 simpr 484 . . . . . . 7 ((𝑥𝐵𝑦 = 𝑥) → 𝑦 = 𝑥)
1914, 17, 18jca31 514 . . . . . 6 ((𝑥𝐵𝑦 = 𝑥) → ((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥))
20 simpl 482 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) → 𝑥𝐵)
2120anim1i 614 . . . . . . 7 (((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥) → (𝑥𝐵𝑦 = 𝑥))
2221a1i 11 . . . . . 6 (𝐺 ∈ Grp → (((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥) → (𝑥𝐵𝑦 = 𝑥)))
2319, 22impbid2 226 . . . . 5 (𝐺 ∈ Grp → ((𝑥𝐵𝑦 = 𝑥) ↔ ((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥)))
24 simpl 482 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
25 simpr 484 . . . . . . . . 9 ((𝑥𝐵𝑦𝐵) → 𝑦𝐵)
2625adantl 481 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
2720adantl 481 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
284, 8, 24, 26, 27grpinv11 19047 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (((invg𝐺)‘𝑦) = ((invg𝐺)‘𝑥) ↔ 𝑦 = 𝑥))
294, 8grpinvcl 19027 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
3029adantrr 716 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((invg𝐺)‘𝑥) ∈ 𝐵)
314, 9, 2, 8grpinvid2 19032 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵 ∧ ((invg𝐺)‘𝑥) ∈ 𝐵) → (((invg𝐺)‘𝑦) = ((invg𝐺)‘𝑥) ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ))
3224, 26, 30, 31syl3anc 1371 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (((invg𝐺)‘𝑦) = ((invg𝐺)‘𝑥) ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ))
3328, 32bitr3d 281 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 = 𝑥 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ))
3433pm5.32da 578 . . . . 5 (𝐺 ∈ Grp → (((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥) ↔ ((𝑥𝐵𝑦𝐵) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 )))
35 vex 3492 . . . . . . . 8 𝑥 ∈ V
36 vex 3492 . . . . . . . 8 𝑦 ∈ V
3735, 36prss 4845 . . . . . . 7 ((𝑥𝐵𝑦𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵)
3837a1i 11 . . . . . 6 (𝐺 ∈ Grp → ((𝑥𝐵𝑦𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵))
391eleq2i 2836 . . . . . . . 8 ((((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ { 0 })
40 ovex 7481 . . . . . . . . 9 (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ V
4140elsn 4663 . . . . . . . 8 ((((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ { 0 } ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 )
4239, 41bitr2i 276 . . . . . . 7 ((((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)
4342a1i 11 . . . . . 6 (𝐺 ∈ Grp → ((((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆))
4438, 43anbi12d 631 . . . . 5 (𝐺 ∈ Grp → (((𝑥𝐵𝑦𝐵) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)))
4523, 34, 443bitrd 305 . . . 4 (𝐺 ∈ Grp → ((𝑥𝐵𝑦 = 𝑥) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)))
4645opabbidv 5232 . . 3 (𝐺 ∈ Grp → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
4713, 46eqtr2id 2793 . 2 (𝐺 ∈ Grp → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} = ( I ↾ 𝐵))
4812, 47eqtrd 2780 1 (𝐺 ∈ Grp → 𝑅 = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wss 3976  {csn 4648  {cpr 4650  {copab 5228   I cid 5592  cres 5702  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Grpcgrp 18973  invgcminusg 18974  SubGrpcsubg 19160   ~QG cqg 19162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-subg 19163  df-eqg 19165
This theorem is referenced by:  eqg0subgecsn  19237
  Copyright terms: Public domain W3C validator