MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqg0subg Structured version   Visualization version   GIF version

Theorem eqg0subg 19135
Description: The coset equivalence relation for the trivial (zero) subgroup of a group is the identity relation restricted to the base set of the group. (Contributed by AV, 25-Feb-2025.)
Hypotheses
Ref Expression
eqg0subg.0 0 = (0g𝐺)
eqg0subg.s 𝑆 = { 0 }
eqg0subg.b 𝐵 = (Base‘𝐺)
eqg0subg.r 𝑅 = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
eqg0subg (𝐺 ∈ Grp → 𝑅 = ( I ↾ 𝐵))

Proof of Theorem eqg0subg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqg0subg.s . . . 4 𝑆 = { 0 }
2 eqg0subg.0 . . . . . 6 0 = (0g𝐺)
320subg 19090 . . . . 5 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
4 eqg0subg.b . . . . . 6 𝐵 = (Base‘𝐺)
54subgss 19066 . . . . 5 ({ 0 } ∈ (SubGrp‘𝐺) → { 0 } ⊆ 𝐵)
63, 5syl 17 . . . 4 (𝐺 ∈ Grp → { 0 } ⊆ 𝐵)
71, 6eqsstrid 3988 . . 3 (𝐺 ∈ Grp → 𝑆𝐵)
8 eqid 2730 . . . 4 (invg𝐺) = (invg𝐺)
9 eqid 2730 . . . 4 (+g𝐺) = (+g𝐺)
10 eqg0subg.r . . . 4 𝑅 = (𝐺 ~QG 𝑆)
114, 8, 9, 10eqgfval 19115 . . 3 ((𝐺 ∈ Grp ∧ 𝑆𝐵) → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
127, 11mpdan 687 . 2 (𝐺 ∈ Grp → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
13 opabresid 6024 . . 3 ( I ↾ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)}
14 simpl 482 . . . . . . 7 ((𝑥𝐵𝑦 = 𝑥) → 𝑥𝐵)
15 eleq1w 2812 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
1615equcoms 2020 . . . . . . . 8 (𝑦 = 𝑥 → (𝑥𝐵𝑦𝐵))
1716biimpac 478 . . . . . . 7 ((𝑥𝐵𝑦 = 𝑥) → 𝑦𝐵)
18 simpr 484 . . . . . . 7 ((𝑥𝐵𝑦 = 𝑥) → 𝑦 = 𝑥)
1914, 17, 18jca31 514 . . . . . 6 ((𝑥𝐵𝑦 = 𝑥) → ((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥))
20 simpl 482 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) → 𝑥𝐵)
2120anim1i 615 . . . . . . 7 (((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥) → (𝑥𝐵𝑦 = 𝑥))
2221a1i 11 . . . . . 6 (𝐺 ∈ Grp → (((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥) → (𝑥𝐵𝑦 = 𝑥)))
2319, 22impbid2 226 . . . . 5 (𝐺 ∈ Grp → ((𝑥𝐵𝑦 = 𝑥) ↔ ((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥)))
24 simpl 482 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
25 simpr 484 . . . . . . . . 9 ((𝑥𝐵𝑦𝐵) → 𝑦𝐵)
2625adantl 481 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
2720adantl 481 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
284, 8, 24, 26, 27grpinv11 18946 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (((invg𝐺)‘𝑦) = ((invg𝐺)‘𝑥) ↔ 𝑦 = 𝑥))
294, 8grpinvcl 18926 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
3029adantrr 717 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((invg𝐺)‘𝑥) ∈ 𝐵)
314, 9, 2, 8grpinvid2 18931 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵 ∧ ((invg𝐺)‘𝑥) ∈ 𝐵) → (((invg𝐺)‘𝑦) = ((invg𝐺)‘𝑥) ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ))
3224, 26, 30, 31syl3anc 1373 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (((invg𝐺)‘𝑦) = ((invg𝐺)‘𝑥) ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ))
3328, 32bitr3d 281 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 = 𝑥 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ))
3433pm5.32da 579 . . . . 5 (𝐺 ∈ Grp → (((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥) ↔ ((𝑥𝐵𝑦𝐵) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 )))
35 vex 3454 . . . . . . . 8 𝑥 ∈ V
36 vex 3454 . . . . . . . 8 𝑦 ∈ V
3735, 36prss 4787 . . . . . . 7 ((𝑥𝐵𝑦𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵)
3837a1i 11 . . . . . 6 (𝐺 ∈ Grp → ((𝑥𝐵𝑦𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵))
391eleq2i 2821 . . . . . . . 8 ((((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ { 0 })
40 ovex 7423 . . . . . . . . 9 (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ V
4140elsn 4607 . . . . . . . 8 ((((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ { 0 } ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 )
4239, 41bitr2i 276 . . . . . . 7 ((((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)
4342a1i 11 . . . . . 6 (𝐺 ∈ Grp → ((((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆))
4438, 43anbi12d 632 . . . . 5 (𝐺 ∈ Grp → (((𝑥𝐵𝑦𝐵) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)))
4523, 34, 443bitrd 305 . . . 4 (𝐺 ∈ Grp → ((𝑥𝐵𝑦 = 𝑥) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)))
4645opabbidv 5176 . . 3 (𝐺 ∈ Grp → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
4713, 46eqtr2id 2778 . 2 (𝐺 ∈ Grp → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} = ( I ↾ 𝐵))
4812, 47eqtrd 2765 1 (𝐺 ∈ Grp → 𝑅 = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3917  {csn 4592  {cpr 4594  {copab 5172   I cid 5535  cres 5643  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Grpcgrp 18872  invgcminusg 18873  SubGrpcsubg 19059   ~QG cqg 19061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-subg 19062  df-eqg 19064
This theorem is referenced by:  eqg0subgecsn  19136
  Copyright terms: Public domain W3C validator