MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqg0subg Structured version   Visualization version   GIF version

Theorem eqg0subg 19093
Description: The coset equivalence relation for the trivial (zero) subgroup of a group is the identity relation restricted to the base set of the group. (Contributed by AV, 25-Feb-2025.)
Hypotheses
Ref Expression
eqg0subg.0 0 = (0g𝐺)
eqg0subg.s 𝑆 = { 0 }
eqg0subg.b 𝐵 = (Base‘𝐺)
eqg0subg.r 𝑅 = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
eqg0subg (𝐺 ∈ Grp → 𝑅 = ( I ↾ 𝐵))

Proof of Theorem eqg0subg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqg0subg.s . . . 4 𝑆 = { 0 }
2 eqg0subg.0 . . . . . 6 0 = (0g𝐺)
320subg 19048 . . . . 5 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
4 eqg0subg.b . . . . . 6 𝐵 = (Base‘𝐺)
54subgss 19024 . . . . 5 ({ 0 } ∈ (SubGrp‘𝐺) → { 0 } ⊆ 𝐵)
63, 5syl 17 . . . 4 (𝐺 ∈ Grp → { 0 } ⊆ 𝐵)
71, 6eqsstrid 3976 . . 3 (𝐺 ∈ Grp → 𝑆𝐵)
8 eqid 2729 . . . 4 (invg𝐺) = (invg𝐺)
9 eqid 2729 . . . 4 (+g𝐺) = (+g𝐺)
10 eqg0subg.r . . . 4 𝑅 = (𝐺 ~QG 𝑆)
114, 8, 9, 10eqgfval 19073 . . 3 ((𝐺 ∈ Grp ∧ 𝑆𝐵) → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
127, 11mpdan 687 . 2 (𝐺 ∈ Grp → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
13 opabresid 6005 . . 3 ( I ↾ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)}
14 simpl 482 . . . . . . 7 ((𝑥𝐵𝑦 = 𝑥) → 𝑥𝐵)
15 eleq1w 2811 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
1615equcoms 2020 . . . . . . . 8 (𝑦 = 𝑥 → (𝑥𝐵𝑦𝐵))
1716biimpac 478 . . . . . . 7 ((𝑥𝐵𝑦 = 𝑥) → 𝑦𝐵)
18 simpr 484 . . . . . . 7 ((𝑥𝐵𝑦 = 𝑥) → 𝑦 = 𝑥)
1914, 17, 18jca31 514 . . . . . 6 ((𝑥𝐵𝑦 = 𝑥) → ((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥))
20 simpl 482 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) → 𝑥𝐵)
2120anim1i 615 . . . . . . 7 (((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥) → (𝑥𝐵𝑦 = 𝑥))
2221a1i 11 . . . . . 6 (𝐺 ∈ Grp → (((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥) → (𝑥𝐵𝑦 = 𝑥)))
2319, 22impbid2 226 . . . . 5 (𝐺 ∈ Grp → ((𝑥𝐵𝑦 = 𝑥) ↔ ((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥)))
24 simpl 482 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
25 simpr 484 . . . . . . . . 9 ((𝑥𝐵𝑦𝐵) → 𝑦𝐵)
2625adantl 481 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
2720adantl 481 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
284, 8, 24, 26, 27grpinv11 18904 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (((invg𝐺)‘𝑦) = ((invg𝐺)‘𝑥) ↔ 𝑦 = 𝑥))
294, 8grpinvcl 18884 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
3029adantrr 717 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((invg𝐺)‘𝑥) ∈ 𝐵)
314, 9, 2, 8grpinvid2 18889 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵 ∧ ((invg𝐺)‘𝑥) ∈ 𝐵) → (((invg𝐺)‘𝑦) = ((invg𝐺)‘𝑥) ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ))
3224, 26, 30, 31syl3anc 1373 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (((invg𝐺)‘𝑦) = ((invg𝐺)‘𝑥) ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ))
3328, 32bitr3d 281 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 = 𝑥 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ))
3433pm5.32da 579 . . . . 5 (𝐺 ∈ Grp → (((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥) ↔ ((𝑥𝐵𝑦𝐵) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 )))
35 vex 3442 . . . . . . . 8 𝑥 ∈ V
36 vex 3442 . . . . . . . 8 𝑦 ∈ V
3735, 36prss 4774 . . . . . . 7 ((𝑥𝐵𝑦𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵)
3837a1i 11 . . . . . 6 (𝐺 ∈ Grp → ((𝑥𝐵𝑦𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵))
391eleq2i 2820 . . . . . . . 8 ((((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ { 0 })
40 ovex 7386 . . . . . . . . 9 (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ V
4140elsn 4594 . . . . . . . 8 ((((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ { 0 } ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 )
4239, 41bitr2i 276 . . . . . . 7 ((((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)
4342a1i 11 . . . . . 6 (𝐺 ∈ Grp → ((((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆))
4438, 43anbi12d 632 . . . . 5 (𝐺 ∈ Grp → (((𝑥𝐵𝑦𝐵) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)))
4523, 34, 443bitrd 305 . . . 4 (𝐺 ∈ Grp → ((𝑥𝐵𝑦 = 𝑥) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)))
4645opabbidv 5161 . . 3 (𝐺 ∈ Grp → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
4713, 46eqtr2id 2777 . 2 (𝐺 ∈ Grp → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} = ( I ↾ 𝐵))
4812, 47eqtrd 2764 1 (𝐺 ∈ Grp → 𝑅 = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3905  {csn 4579  {cpr 4581  {copab 5157   I cid 5517  cres 5625  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  0gc0g 17361  Grpcgrp 18830  invgcminusg 18831  SubGrpcsubg 19017   ~QG cqg 19019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-subg 19020  df-eqg 19022
This theorem is referenced by:  eqg0subgecsn  19094
  Copyright terms: Public domain W3C validator