Step | Hyp | Ref
| Expression |
1 | | eqg0subg.s |
. . . 4
⊢ 𝑆 = { 0 } |
2 | | eqg0subg.0 |
. . . . . 6
⊢ 0 =
(0g‘𝐺) |
3 | 2 | 0subg 19025 |
. . . . 5
⊢ (𝐺 ∈ Grp → { 0 } ∈
(SubGrp‘𝐺)) |
4 | | eqg0subg.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐺) |
5 | 4 | subgss 19001 |
. . . . 5
⊢ ({ 0 } ∈
(SubGrp‘𝐺) → {
0 }
⊆ 𝐵) |
6 | 3, 5 | syl 17 |
. . . 4
⊢ (𝐺 ∈ Grp → { 0 } ⊆
𝐵) |
7 | 1, 6 | eqsstrid 4029 |
. . 3
⊢ (𝐺 ∈ Grp → 𝑆 ⊆ 𝐵) |
8 | | eqid 2732 |
. . . 4
⊢
(invg‘𝐺) = (invg‘𝐺) |
9 | | eqid 2732 |
. . . 4
⊢
(+g‘𝐺) = (+g‘𝐺) |
10 | | eqg0subg.r |
. . . 4
⊢ 𝑅 = (𝐺 ~QG 𝑆) |
11 | 4, 8, 9, 10 | eqgfval 19050 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑆)}) |
12 | 7, 11 | mpdan 685 |
. 2
⊢ (𝐺 ∈ Grp → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑆)}) |
13 | | opabresid 6047 |
. . 3
⊢ ( I
↾ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥)} |
14 | | simpl 483 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥) → 𝑥 ∈ 𝐵) |
15 | | eleq1w 2816 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
16 | 15 | equcoms 2023 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
17 | 16 | biimpac 479 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥) → 𝑦 ∈ 𝐵) |
18 | | simpr 485 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥) |
19 | 14, 17, 18 | jca31 515 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑦 = 𝑥)) |
20 | | simpl 483 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
21 | 20 | anim1i 615 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑦 = 𝑥) → (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥)) |
22 | 21 | a1i 11 |
. . . . . 6
⊢ (𝐺 ∈ Grp → (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑦 = 𝑥) → (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥))) |
23 | 19, 22 | impbid2 225 |
. . . . 5
⊢ (𝐺 ∈ Grp → ((𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑦 = 𝑥))) |
24 | | simpl 483 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐺 ∈ Grp) |
25 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
26 | 25 | adantl 482 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
27 | 20 | adantl 482 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
28 | 4, 8, 24, 26, 27 | grpinv11 18888 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (((invg‘𝐺)‘𝑦) = ((invg‘𝐺)‘𝑥) ↔ 𝑦 = 𝑥)) |
29 | 4, 8 | grpinvcl 18868 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
30 | 29 | adantrr 715 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
31 | 4, 9, 2, 8 | grpinvid2 18873 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐵) → (((invg‘𝐺)‘𝑦) = ((invg‘𝐺)‘𝑥) ↔ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) = 0 )) |
32 | 24, 26, 30, 31 | syl3anc 1371 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (((invg‘𝐺)‘𝑦) = ((invg‘𝐺)‘𝑥) ↔ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) = 0 )) |
33 | 28, 32 | bitr3d 280 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑦 = 𝑥 ↔ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) = 0 )) |
34 | 33 | pm5.32da 579 |
. . . . 5
⊢ (𝐺 ∈ Grp → (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑦 = 𝑥) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) = 0 ))) |
35 | | vex 3478 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
36 | | vex 3478 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
37 | 35, 36 | prss 4822 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵) |
38 | 37 | a1i 11 |
. . . . . 6
⊢ (𝐺 ∈ Grp → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵)) |
39 | 1 | eleq2i 2825 |
. . . . . . . 8
⊢
((((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑆 ↔ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ { 0 }) |
40 | | ovex 7438 |
. . . . . . . . 9
⊢
(((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ V |
41 | 40 | elsn 4642 |
. . . . . . . 8
⊢
((((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ { 0 } ↔
(((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) = 0 ) |
42 | 39, 41 | bitr2i 275 |
. . . . . . 7
⊢
((((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) = 0 ↔
(((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑆) |
43 | 42 | a1i 11 |
. . . . . 6
⊢ (𝐺 ∈ Grp →
((((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) = 0 ↔
(((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑆)) |
44 | 38, 43 | anbi12d 631 |
. . . . 5
⊢ (𝐺 ∈ Grp → (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) = 0 ) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑆))) |
45 | 23, 34, 44 | 3bitrd 304 |
. . . 4
⊢ (𝐺 ∈ Grp → ((𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑆))) |
46 | 45 | opabbidv 5213 |
. . 3
⊢ (𝐺 ∈ Grp → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑆)}) |
47 | 13, 46 | eqtr2id 2785 |
. 2
⊢ (𝐺 ∈ Grp → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑆)} = ( I ↾ 𝐵)) |
48 | 12, 47 | eqtrd 2772 |
1
⊢ (𝐺 ∈ Grp → 𝑅 = ( I ↾ 𝐵)) |