MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqg0subg Structured version   Visualization version   GIF version

Theorem eqg0subg 19122
Description: The coset equivalence relation for the trivial (zero) subgroup of a group is the identity relation restricted to the base set of the group. (Contributed by AV, 25-Feb-2025.)
Hypotheses
Ref Expression
eqg0subg.0 0 = (0g𝐺)
eqg0subg.s 𝑆 = { 0 }
eqg0subg.b 𝐵 = (Base‘𝐺)
eqg0subg.r 𝑅 = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
eqg0subg (𝐺 ∈ Grp → 𝑅 = ( I ↾ 𝐵))

Proof of Theorem eqg0subg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqg0subg.s . . . 4 𝑆 = { 0 }
2 eqg0subg.0 . . . . . 6 0 = (0g𝐺)
320subg 19078 . . . . 5 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
4 eqg0subg.b . . . . . 6 𝐵 = (Base‘𝐺)
54subgss 19054 . . . . 5 ({ 0 } ∈ (SubGrp‘𝐺) → { 0 } ⊆ 𝐵)
63, 5syl 17 . . . 4 (𝐺 ∈ Grp → { 0 } ⊆ 𝐵)
71, 6eqsstrid 4025 . . 3 (𝐺 ∈ Grp → 𝑆𝐵)
8 eqid 2726 . . . 4 (invg𝐺) = (invg𝐺)
9 eqid 2726 . . . 4 (+g𝐺) = (+g𝐺)
10 eqg0subg.r . . . 4 𝑅 = (𝐺 ~QG 𝑆)
114, 8, 9, 10eqgfval 19103 . . 3 ((𝐺 ∈ Grp ∧ 𝑆𝐵) → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
127, 11mpdan 684 . 2 (𝐺 ∈ Grp → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
13 opabresid 6043 . . 3 ( I ↾ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)}
14 simpl 482 . . . . . . 7 ((𝑥𝐵𝑦 = 𝑥) → 𝑥𝐵)
15 eleq1w 2810 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
1615equcoms 2015 . . . . . . . 8 (𝑦 = 𝑥 → (𝑥𝐵𝑦𝐵))
1716biimpac 478 . . . . . . 7 ((𝑥𝐵𝑦 = 𝑥) → 𝑦𝐵)
18 simpr 484 . . . . . . 7 ((𝑥𝐵𝑦 = 𝑥) → 𝑦 = 𝑥)
1914, 17, 18jca31 514 . . . . . 6 ((𝑥𝐵𝑦 = 𝑥) → ((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥))
20 simpl 482 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) → 𝑥𝐵)
2120anim1i 614 . . . . . . 7 (((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥) → (𝑥𝐵𝑦 = 𝑥))
2221a1i 11 . . . . . 6 (𝐺 ∈ Grp → (((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥) → (𝑥𝐵𝑦 = 𝑥)))
2319, 22impbid2 225 . . . . 5 (𝐺 ∈ Grp → ((𝑥𝐵𝑦 = 𝑥) ↔ ((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥)))
24 simpl 482 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
25 simpr 484 . . . . . . . . 9 ((𝑥𝐵𝑦𝐵) → 𝑦𝐵)
2625adantl 481 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
2720adantl 481 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
284, 8, 24, 26, 27grpinv11 18937 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (((invg𝐺)‘𝑦) = ((invg𝐺)‘𝑥) ↔ 𝑦 = 𝑥))
294, 8grpinvcl 18917 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
3029adantrr 714 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((invg𝐺)‘𝑥) ∈ 𝐵)
314, 9, 2, 8grpinvid2 18922 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵 ∧ ((invg𝐺)‘𝑥) ∈ 𝐵) → (((invg𝐺)‘𝑦) = ((invg𝐺)‘𝑥) ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ))
3224, 26, 30, 31syl3anc 1368 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (((invg𝐺)‘𝑦) = ((invg𝐺)‘𝑥) ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ))
3328, 32bitr3d 281 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 = 𝑥 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ))
3433pm5.32da 578 . . . . 5 (𝐺 ∈ Grp → (((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥) ↔ ((𝑥𝐵𝑦𝐵) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 )))
35 vex 3472 . . . . . . . 8 𝑥 ∈ V
36 vex 3472 . . . . . . . 8 𝑦 ∈ V
3735, 36prss 4818 . . . . . . 7 ((𝑥𝐵𝑦𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵)
3837a1i 11 . . . . . 6 (𝐺 ∈ Grp → ((𝑥𝐵𝑦𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵))
391eleq2i 2819 . . . . . . . 8 ((((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ { 0 })
40 ovex 7438 . . . . . . . . 9 (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ V
4140elsn 4638 . . . . . . . 8 ((((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ { 0 } ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 )
4239, 41bitr2i 276 . . . . . . 7 ((((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)
4342a1i 11 . . . . . 6 (𝐺 ∈ Grp → ((((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆))
4438, 43anbi12d 630 . . . . 5 (𝐺 ∈ Grp → (((𝑥𝐵𝑦𝐵) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)))
4523, 34, 443bitrd 305 . . . 4 (𝐺 ∈ Grp → ((𝑥𝐵𝑦 = 𝑥) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)))
4645opabbidv 5207 . . 3 (𝐺 ∈ Grp → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
4713, 46eqtr2id 2779 . 2 (𝐺 ∈ Grp → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} = ( I ↾ 𝐵))
4812, 47eqtrd 2766 1 (𝐺 ∈ Grp → 𝑅 = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wss 3943  {csn 4623  {cpr 4625  {copab 5203   I cid 5566  cres 5671  cfv 6537  (class class class)co 7405  Basecbs 17153  +gcplusg 17206  0gc0g 17394  Grpcgrp 18863  invgcminusg 18864  SubGrpcsubg 19047   ~QG cqg 19049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-0g 17396  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18714  df-grp 18866  df-minusg 18867  df-subg 19050  df-eqg 19052
This theorem is referenced by:  eqg0subgecsn  19123
  Copyright terms: Public domain W3C validator