MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqg0subg Structured version   Visualization version   GIF version

Theorem eqg0subg 19101
Description: The coset equivalence relation for the trivial (zero) subgroup of a group is the identity relation restricted to the base set of the group. (Contributed by AV, 25-Feb-2025.)
Hypotheses
Ref Expression
eqg0subg.0 0 = (0g𝐺)
eqg0subg.s 𝑆 = { 0 }
eqg0subg.b 𝐵 = (Base‘𝐺)
eqg0subg.r 𝑅 = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
eqg0subg (𝐺 ∈ Grp → 𝑅 = ( I ↾ 𝐵))

Proof of Theorem eqg0subg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqg0subg.s . . . 4 𝑆 = { 0 }
2 eqg0subg.0 . . . . . 6 0 = (0g𝐺)
320subg 19056 . . . . 5 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
4 eqg0subg.b . . . . . 6 𝐵 = (Base‘𝐺)
54subgss 19032 . . . . 5 ({ 0 } ∈ (SubGrp‘𝐺) → { 0 } ⊆ 𝐵)
63, 5syl 17 . . . 4 (𝐺 ∈ Grp → { 0 } ⊆ 𝐵)
71, 6eqsstrid 3971 . . 3 (𝐺 ∈ Grp → 𝑆𝐵)
8 eqid 2730 . . . 4 (invg𝐺) = (invg𝐺)
9 eqid 2730 . . . 4 (+g𝐺) = (+g𝐺)
10 eqg0subg.r . . . 4 𝑅 = (𝐺 ~QG 𝑆)
114, 8, 9, 10eqgfval 19081 . . 3 ((𝐺 ∈ Grp ∧ 𝑆𝐵) → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
127, 11mpdan 687 . 2 (𝐺 ∈ Grp → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
13 opabresid 5996 . . 3 ( I ↾ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)}
14 simpl 482 . . . . . . 7 ((𝑥𝐵𝑦 = 𝑥) → 𝑥𝐵)
15 eleq1w 2812 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
1615equcoms 2021 . . . . . . . 8 (𝑦 = 𝑥 → (𝑥𝐵𝑦𝐵))
1716biimpac 478 . . . . . . 7 ((𝑥𝐵𝑦 = 𝑥) → 𝑦𝐵)
18 simpr 484 . . . . . . 7 ((𝑥𝐵𝑦 = 𝑥) → 𝑦 = 𝑥)
1914, 17, 18jca31 514 . . . . . 6 ((𝑥𝐵𝑦 = 𝑥) → ((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥))
20 simpl 482 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) → 𝑥𝐵)
2120anim1i 615 . . . . . . 7 (((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥) → (𝑥𝐵𝑦 = 𝑥))
2221a1i 11 . . . . . 6 (𝐺 ∈ Grp → (((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥) → (𝑥𝐵𝑦 = 𝑥)))
2319, 22impbid2 226 . . . . 5 (𝐺 ∈ Grp → ((𝑥𝐵𝑦 = 𝑥) ↔ ((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥)))
24 simpl 482 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
25 simpr 484 . . . . . . . . 9 ((𝑥𝐵𝑦𝐵) → 𝑦𝐵)
2625adantl 481 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
2720adantl 481 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
284, 8, 24, 26, 27grpinv11 18912 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (((invg𝐺)‘𝑦) = ((invg𝐺)‘𝑥) ↔ 𝑦 = 𝑥))
294, 8grpinvcl 18892 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
3029adantrr 717 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((invg𝐺)‘𝑥) ∈ 𝐵)
314, 9, 2, 8grpinvid2 18897 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵 ∧ ((invg𝐺)‘𝑥) ∈ 𝐵) → (((invg𝐺)‘𝑦) = ((invg𝐺)‘𝑥) ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ))
3224, 26, 30, 31syl3anc 1373 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (((invg𝐺)‘𝑦) = ((invg𝐺)‘𝑥) ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ))
3328, 32bitr3d 281 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 = 𝑥 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ))
3433pm5.32da 579 . . . . 5 (𝐺 ∈ Grp → (((𝑥𝐵𝑦𝐵) ∧ 𝑦 = 𝑥) ↔ ((𝑥𝐵𝑦𝐵) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 )))
35 vex 3438 . . . . . . . 8 𝑥 ∈ V
36 vex 3438 . . . . . . . 8 𝑦 ∈ V
3735, 36prss 4770 . . . . . . 7 ((𝑥𝐵𝑦𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵)
3837a1i 11 . . . . . 6 (𝐺 ∈ Grp → ((𝑥𝐵𝑦𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵))
391eleq2i 2821 . . . . . . . 8 ((((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ { 0 })
40 ovex 7374 . . . . . . . . 9 (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ V
4140elsn 4589 . . . . . . . 8 ((((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ { 0 } ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 )
4239, 41bitr2i 276 . . . . . . 7 ((((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)
4342a1i 11 . . . . . 6 (𝐺 ∈ Grp → ((((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆))
4438, 43anbi12d 632 . . . . 5 (𝐺 ∈ Grp → (((𝑥𝐵𝑦𝐵) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) = 0 ) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)))
4523, 34, 443bitrd 305 . . . 4 (𝐺 ∈ Grp → ((𝑥𝐵𝑦 = 𝑥) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)))
4645opabbidv 5155 . . 3 (𝐺 ∈ Grp → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
4713, 46eqtr2id 2778 . 2 (𝐺 ∈ Grp → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} = ( I ↾ 𝐵))
4812, 47eqtrd 2765 1 (𝐺 ∈ Grp → 𝑅 = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wss 3900  {csn 4574  {cpr 4576  {copab 5151   I cid 5508  cres 5616  cfv 6477  (class class class)co 7341  Basecbs 17112  +gcplusg 17153  0gc0g 17335  Grpcgrp 18838  invgcminusg 18839  SubGrpcsubg 19025   ~QG cqg 19027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-0g 17337  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-grp 18841  df-minusg 18842  df-subg 19028  df-eqg 19030
This theorem is referenced by:  eqg0subgecsn  19102
  Copyright terms: Public domain W3C validator