| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppcup3 | Structured version Visualization version GIF version | ||
| Description: The universal property for the universal pair 〈𝑋, 𝑀〉 from a functor to an object, expressed explicitly. (Contributed by Zhi Wang, 4-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppcup3.b | ⊢ 𝐵 = (Base‘𝐷) |
| oppcup3.h | ⊢ 𝐻 = (Hom ‘𝐷) |
| oppcup3.j | ⊢ 𝐽 = (Hom ‘𝐸) |
| oppcup3.xb | ⊢ ∙ = (comp‘𝐸) |
| oppcup3.o | ⊢ 𝑂 = (oppCat‘𝐷) |
| oppcup3.p | ⊢ 𝑃 = (oppCat‘𝐸) |
| oppcup3.x | ⊢ (𝜑 → 𝑋(〈𝐹, 𝑇〉(𝑂 UP 𝑃)𝑊)𝑀) |
| oppcup3.g | ⊢ (𝜑 → tpos 𝑇 = 𝐺) |
| oppcup3.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| oppcup3.n | ⊢ (𝜑 → 𝑁 ∈ ((𝐹‘𝑌)𝐽𝑊)) |
| Ref | Expression |
|---|---|
| oppcup3 | ⊢ (𝜑 → ∃!𝑘 ∈ (𝑌𝐻𝑋)𝑁 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉 ∙ 𝑊)((𝑌𝐺𝑋)‘𝑘))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcup3.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 2 | oppcup3.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐷) | |
| 3 | oppcup3.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐸) | |
| 4 | oppcup3.xb | . . 3 ⊢ ∙ = (comp‘𝐸) | |
| 5 | oppcup3.o | . . 3 ⊢ 𝑂 = (oppCat‘𝐷) | |
| 6 | oppcup3.p | . . 3 ⊢ 𝑃 = (oppCat‘𝐸) | |
| 7 | oppcup3.x | . . . 4 ⊢ (𝜑 → 𝑋(〈𝐹, 𝑇〉(𝑂 UP 𝑃)𝑊)𝑀) | |
| 8 | oppcup3.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | 8, 1 | eleqtrdi 2839 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) |
| 10 | 9 | elfvexd 6899 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ V) |
| 11 | oppcup3.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ((𝐹‘𝑌)𝐽𝑊)) | |
| 12 | 11 | ne0d 4307 | . . . . 5 ⊢ (𝜑 → ((𝐹‘𝑌)𝐽𝑊) ≠ ∅) |
| 13 | fvprc 6852 | . . . . . . . . 9 ⊢ (¬ 𝐸 ∈ V → (Hom ‘𝐸) = ∅) | |
| 14 | 3, 13 | eqtrid 2777 | . . . . . . . 8 ⊢ (¬ 𝐸 ∈ V → 𝐽 = ∅) |
| 15 | 14 | oveqd 7406 | . . . . . . 7 ⊢ (¬ 𝐸 ∈ V → ((𝐹‘𝑌)𝐽𝑊) = ((𝐹‘𝑌)∅𝑊)) |
| 16 | 0ov 7426 | . . . . . . 7 ⊢ ((𝐹‘𝑌)∅𝑊) = ∅ | |
| 17 | 15, 16 | eqtrdi 2781 | . . . . . 6 ⊢ (¬ 𝐸 ∈ V → ((𝐹‘𝑌)𝐽𝑊) = ∅) |
| 18 | 17 | necon1ai 2953 | . . . . 5 ⊢ (((𝐹‘𝑌)𝐽𝑊) ≠ ∅ → 𝐸 ∈ V) |
| 19 | 12, 18 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ V) |
| 20 | oppcup3.g | . . . 4 ⊢ (𝜑 → tpos 𝑇 = 𝐺) | |
| 21 | 7, 6, 5, 10, 19, 20 | oppcuprcl2 49181 | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| 22 | 7, 20 | uptpos 49177 | . . 3 ⊢ (𝜑 → 𝑋(〈𝐹, tpos 𝐺〉(𝑂 UP 𝑃)𝑊)𝑀) |
| 23 | 1, 2, 3, 4, 5, 6, 21, 22 | oppcup2 49187 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ ((𝐹‘𝑦)𝐽𝑊)∃!𝑘 ∈ (𝑦𝐻𝑋)𝑔 = (𝑀(〈(𝐹‘𝑦), (𝐹‘𝑋)〉 ∙ 𝑊)((𝑦𝐺𝑋)‘𝑘))) |
| 24 | 23, 8, 11 | oppcup3lem 49185 | 1 ⊢ (𝜑 → ∃!𝑘 ∈ (𝑌𝐻𝑋)𝑁 = (𝑀(〈(𝐹‘𝑌), (𝐹‘𝑋)〉 ∙ 𝑊)((𝑌𝐺𝑋)‘𝑘))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃!wreu 3354 Vcvv 3450 ∅c0 4298 〈cop 4597 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 tpos ctpos 8206 Basecbs 17185 Hom chom 17237 compcco 17238 oppCatcoppc 17678 UP cup 49152 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-map 8803 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-cat 17635 df-cid 17636 df-homf 17637 df-comf 17638 df-oppc 17679 df-func 17826 df-up 49153 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |