| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hpgne2 | Structured version Visualization version GIF version | ||
| Description: Points on the open half plane cannot lie on its border. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
| Ref | Expression |
|---|---|
| ishpg.p | ⊢ 𝑃 = (Base‘𝐺) |
| ishpg.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ishpg.l | ⊢ 𝐿 = (LineG‘𝐺) |
| ishpg.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
| ishpg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| ishpg.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
| hpgbr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| hpgbr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| hpgne1.1 | ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐵) |
| Ref | Expression |
|---|---|
| hpgne2 | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ishpg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 3 | ishpg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | ishpg.o | . . 3 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
| 5 | ishpg.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 6 | ishpg.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
| 7 | 6 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐷 ∈ ran 𝐿) |
| 8 | ishpg.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 9 | 8 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐺 ∈ TarskiG) |
| 10 | hpgbr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 11 | 10 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐵 ∈ 𝑃) |
| 12 | simplr 768 | . . 3 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝑐 ∈ 𝑃) | |
| 13 | simprr 772 | . . 3 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐵𝑂𝑐) | |
| 14 | 1, 2, 3, 4, 5, 7, 9, 11, 12, 13 | oppne1 28705 | . 2 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → ¬ 𝐵 ∈ 𝐷) |
| 15 | hpgne1.1 | . . 3 ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐵) | |
| 16 | hpgbr.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 17 | 1, 3, 5, 4, 8, 6, 16, 10 | hpgbr 28724 | . . 3 ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
| 18 | 15, 17 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) |
| 19 | 14, 18 | r19.29a 3137 | 1 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∖ cdif 3902 class class class wbr 5095 {copab 5157 ran crn 5624 ‘cfv 6486 (class class class)co 7353 Basecbs 17139 distcds 17189 TarskiGcstrkg 28391 Itvcitv 28397 LineGclng 28398 hpGchpg 28721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-hpg 28722 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |