|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > hpgne2 | Structured version Visualization version GIF version | ||
| Description: Points on the open half plane cannot lie on its border. (Contributed by Thierry Arnoux, 4-Mar-2020.) | 
| Ref | Expression | 
|---|---|
| ishpg.p | ⊢ 𝑃 = (Base‘𝐺) | 
| ishpg.i | ⊢ 𝐼 = (Itv‘𝐺) | 
| ishpg.l | ⊢ 𝐿 = (LineG‘𝐺) | 
| ishpg.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | 
| ishpg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) | 
| ishpg.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | 
| hpgbr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) | 
| hpgbr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) | 
| hpgne1.1 | ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐵) | 
| Ref | Expression | 
|---|---|
| hpgne2 | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ishpg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | eqid 2736 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 3 | ishpg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | ishpg.o | . . 3 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
| 5 | ishpg.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 6 | ishpg.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
| 7 | 6 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐷 ∈ ran 𝐿) | 
| 8 | ishpg.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 9 | 8 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐺 ∈ TarskiG) | 
| 10 | hpgbr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 11 | 10 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐵 ∈ 𝑃) | 
| 12 | simplr 768 | . . 3 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝑐 ∈ 𝑃) | |
| 13 | simprr 772 | . . 3 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐵𝑂𝑐) | |
| 14 | 1, 2, 3, 4, 5, 7, 9, 11, 12, 13 | oppne1 28750 | . 2 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → ¬ 𝐵 ∈ 𝐷) | 
| 15 | hpgne1.1 | . . 3 ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐵) | |
| 16 | hpgbr.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 17 | 1, 3, 5, 4, 8, 6, 16, 10 | hpgbr 28769 | . . 3 ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) | 
| 18 | 15, 17 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) | 
| 19 | 14, 18 | r19.29a 3161 | 1 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 ∖ cdif 3947 class class class wbr 5142 {copab 5204 ran crn 5685 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 distcds 17307 TarskiGcstrkg 28436 Itvcitv 28442 LineGclng 28443 hpGchpg 28766 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-hpg 28767 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |