MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hpgne2 Structured version   Visualization version   GIF version

Theorem hpgne2 27027
Description: Points on the open half plane cannot lie on its border. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
ishpg.p 𝑃 = (Base‘𝐺)
ishpg.i 𝐼 = (Itv‘𝐺)
ishpg.l 𝐿 = (LineG‘𝐺)
ishpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
ishpg.g (𝜑𝐺 ∈ TarskiG)
ishpg.d (𝜑𝐷 ∈ ran 𝐿)
hpgbr.a (𝜑𝐴𝑃)
hpgbr.b (𝜑𝐵𝑃)
hpgne1.1 (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵)
Assertion
Ref Expression
hpgne2 (𝜑 → ¬ 𝐵𝐷)
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝑡,𝐿   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐿(𝑎,𝑏)

Proof of Theorem hpgne2
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 ishpg.p . . 3 𝑃 = (Base‘𝐺)
2 eqid 2738 . . 3 (dist‘𝐺) = (dist‘𝐺)
3 ishpg.i . . 3 𝐼 = (Itv‘𝐺)
4 ishpg.o . . 3 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
5 ishpg.l . . 3 𝐿 = (LineG‘𝐺)
6 ishpg.d . . . 4 (𝜑𝐷 ∈ ran 𝐿)
76ad2antrr 722 . . 3 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐷 ∈ ran 𝐿)
8 ishpg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
98ad2antrr 722 . . 3 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐺 ∈ TarskiG)
10 hpgbr.b . . . 4 (𝜑𝐵𝑃)
1110ad2antrr 722 . . 3 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐵𝑃)
12 simplr 765 . . 3 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝑐𝑃)
13 simprr 769 . . 3 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐵𝑂𝑐)
141, 2, 3, 4, 5, 7, 9, 11, 12, 13oppne1 27006 . 2 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → ¬ 𝐵𝐷)
15 hpgne1.1 . . 3 (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵)
16 hpgbr.a . . . 4 (𝜑𝐴𝑃)
171, 3, 5, 4, 8, 6, 16, 10hpgbr 27025 . . 3 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
1815, 17mpbid 231 . 2 (𝜑 → ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐))
1914, 18r19.29a 3217 1 (𝜑 → ¬ 𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wrex 3064  cdif 3880   class class class wbr 5070  {copab 5132  ran crn 5581  cfv 6418  (class class class)co 7255  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699  LineGclng 26700  hpGchpg 27022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-hpg 27023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator