Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hpgne2 | Structured version Visualization version GIF version |
Description: Points on the open half plane cannot lie on its border. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
Ref | Expression |
---|---|
ishpg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishpg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishpg.l | ⊢ 𝐿 = (LineG‘𝐺) |
ishpg.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
ishpg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ishpg.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
hpgbr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
hpgbr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
hpgne1.1 | ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐵) |
Ref | Expression |
---|---|
hpgne2 | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishpg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
3 | ishpg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | ishpg.o | . . 3 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
5 | ishpg.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
6 | ishpg.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
7 | 6 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐷 ∈ ran 𝐿) |
8 | ishpg.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
9 | 8 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐺 ∈ TarskiG) |
10 | hpgbr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
11 | 10 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐵 ∈ 𝑃) |
12 | simplr 769 | . . 3 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝑐 ∈ 𝑃) | |
13 | simprr 773 | . . 3 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐵𝑂𝑐) | |
14 | 1, 2, 3, 4, 5, 7, 9, 11, 12, 13 | oppne1 26679 | . 2 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → ¬ 𝐵 ∈ 𝐷) |
15 | hpgne1.1 | . . 3 ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐵) | |
16 | hpgbr.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
17 | 1, 3, 5, 4, 8, 6, 16, 10 | hpgbr 26698 | . . 3 ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
18 | 15, 17 | mpbid 235 | . 2 ⊢ (𝜑 → ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) |
19 | 14, 18 | r19.29a 3198 | 1 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ∃wrex 3054 ∖ cdif 3838 class class class wbr 5027 {copab 5089 ran crn 5520 ‘cfv 6333 (class class class)co 7164 Basecbs 16579 distcds 16670 TarskiGcstrkg 26368 Itvcitv 26374 LineGclng 26375 hpGchpg 26695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-ov 7167 df-hpg 26696 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |