Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for Cartesian product. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
xpeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2827 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | anbi1d 630 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
3 | 2 | opabbidv 5140 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
4 | df-xp 5595 | . 2 ⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
5 | df-xp 5595 | . 2 ⊢ (𝐵 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
6 | 3, 4, 5 | 3eqtr4g 2803 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {copab 5136 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-opab 5137 df-xp 5595 |
This theorem is referenced by: xpeq12 5614 xpeq1i 5615 xpeq1d 5618 opthprc 5651 dmxpid 5839 reseq2 5886 xpnz 6062 xpdisj1 6064 xpcan2 6080 xpima 6085 unixp 6185 unixpid 6187 pmvalg 8626 xpsneng 8843 xpcomeng 8851 xpdom2g 8855 fodomr 8915 unxpdom 9030 xpfi 9085 marypha1lem 9192 iundom2g 10296 hashxplem 14148 dmtrclfv 14729 ramcl 16730 efgval 19323 frgpval 19364 frlmval 20955 txuni2 22716 txbas 22718 txopn 22753 txrest 22782 txdis 22783 txdis1cn 22786 tx1stc 22801 tmdgsum 23246 qustgplem 23272 incistruhgr 27449 isgrpo 28859 hhssablo 29625 hhssnvt 29627 hhsssh 29631 gsumpart 31315 txomap 31784 tpr2rico 31862 elsx 32162 br2base 32236 dya2iocnrect 32248 sxbrsigalem5 32255 sibf0 32301 cvmlift2lem13 33277 naddcllem 33831 |
Copyright terms: Public domain | W3C validator |