| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for Cartesian product. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| xpeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anbi1d 631 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
| 3 | 2 | opabbidv 5173 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
| 4 | df-xp 5644 | . 2 ⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
| 5 | df-xp 5644 | . 2 ⊢ (𝐵 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
| 6 | 3, 4, 5 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {copab 5169 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5170 df-xp 5644 |
| This theorem is referenced by: xpeq12 5663 xpeq1i 5664 xpeq1d 5667 opthprc 5702 dmxpid 5894 reseq2 5945 xpnz 6132 xpdisj1 6134 xpcan2 6150 xpima 6155 unixp 6255 unixpid 6257 naddcllem 8640 pmvalg 8810 xpsneng 9026 xpcomeng 9033 xpdom2g 9037 fodomr 9092 unxpdom 9200 xpfiOLD 9270 fodomfir 9279 marypha1lem 9384 iundom2g 10493 hashxplem 14398 dmtrclfv 14984 ramcl 17000 efgval 19647 frgpval 19688 frlmval 21657 txuni2 23452 txbas 23454 txopn 23489 txrest 23518 txdis 23519 txdis1cn 23522 tx1stc 23537 tmdgsum 23982 qustgplem 24008 incistruhgr 29006 isgrpo 30426 hhssablo 31192 hhssnvt 31194 hhsssh 31198 gsumpart 32997 txomap 33824 tpr2rico 33902 elsx 34184 br2base 34260 dya2iocnrect 34272 sxbrsigalem5 34279 sibf0 34325 cvmlift2lem13 35302 |
| Copyright terms: Public domain | W3C validator |