Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for Cartesian product. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
xpeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2829 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | anbi1d 630 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
3 | 2 | opabbidv 5145 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
4 | df-xp 5596 | . 2 ⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
5 | df-xp 5596 | . 2 ⊢ (𝐵 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
6 | 3, 4, 5 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 {copab 5141 × cxp 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-opab 5142 df-xp 5596 |
This theorem is referenced by: xpeq12 5615 xpeq1i 5616 xpeq1d 5619 opthprc 5652 dmxpid 5838 reseq2 5885 xpnz 6061 xpdisj1 6063 xpcan2 6079 xpima 6084 unixp 6184 unixpid 6186 pmvalg 8609 xpsneng 8826 xpcomeng 8833 xpdom2g 8837 fodomr 8897 unxpdom 9008 xpfi 9063 marypha1lem 9170 iundom2g 10297 hashxplem 14146 dmtrclfv 14727 ramcl 16728 efgval 19321 frgpval 19362 frlmval 20953 txuni2 22714 txbas 22716 txopn 22751 txrest 22780 txdis 22781 txdis1cn 22784 tx1stc 22799 tmdgsum 23244 qustgplem 23270 incistruhgr 27447 isgrpo 28855 hhssablo 29621 hhssnvt 29623 hhsssh 29627 gsumpart 31311 txomap 31780 tpr2rico 31858 elsx 32158 br2base 32232 dya2iocnrect 32244 sxbrsigalem5 32251 sibf0 32297 cvmlift2lem13 33273 naddcllem 33827 |
Copyright terms: Public domain | W3C validator |