![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for Cartesian product. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
xpeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2833 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | anbi1d 630 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
3 | 2 | opabbidv 5232 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
4 | df-xp 5706 | . 2 ⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
5 | df-xp 5706 | . 2 ⊢ (𝐵 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
6 | 3, 4, 5 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {copab 5228 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-opab 5229 df-xp 5706 |
This theorem is referenced by: xpeq12 5725 xpeq1i 5726 xpeq1d 5729 opthprc 5764 dmxpid 5955 reseq2 6004 xpnz 6190 xpdisj1 6192 xpcan2 6208 xpima 6213 unixp 6313 unixpid 6315 naddcllem 8732 pmvalg 8895 xpsneng 9122 xpcomeng 9130 xpdom2g 9134 fodomr 9194 unxpdom 9316 xpfiOLD 9387 fodomfir 9396 marypha1lem 9502 iundom2g 10609 hashxplem 14482 dmtrclfv 15067 ramcl 17076 efgval 19759 frgpval 19800 frlmval 21791 txuni2 23594 txbas 23596 txopn 23631 txrest 23660 txdis 23661 txdis1cn 23664 tx1stc 23679 tmdgsum 24124 qustgplem 24150 incistruhgr 29114 isgrpo 30529 hhssablo 31295 hhssnvt 31297 hhsssh 31301 gsumpart 33038 txomap 33780 tpr2rico 33858 elsx 34158 br2base 34234 dya2iocnrect 34246 sxbrsigalem5 34253 sibf0 34299 cvmlift2lem13 35283 |
Copyright terms: Public domain | W3C validator |