![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for Cartesian product. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
xpeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2827 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | anbi1d 631 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
3 | 2 | opabbidv 5213 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
4 | df-xp 5694 | . 2 ⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
5 | df-xp 5694 | . 2 ⊢ (𝐵 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
6 | 3, 4, 5 | 3eqtr4g 2799 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 {copab 5209 × cxp 5686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-opab 5210 df-xp 5694 |
This theorem is referenced by: xpeq12 5713 xpeq1i 5714 xpeq1d 5717 opthprc 5752 dmxpid 5943 reseq2 5994 xpnz 6180 xpdisj1 6182 xpcan2 6198 xpima 6203 unixp 6303 unixpid 6305 naddcllem 8712 pmvalg 8875 xpsneng 9094 xpcomeng 9102 xpdom2g 9106 fodomr 9166 unxpdom 9286 xpfiOLD 9356 fodomfir 9365 marypha1lem 9470 iundom2g 10577 hashxplem 14468 dmtrclfv 15053 ramcl 17062 efgval 19749 frgpval 19790 frlmval 21785 txuni2 23588 txbas 23590 txopn 23625 txrest 23654 txdis 23655 txdis1cn 23658 tx1stc 23673 tmdgsum 24118 qustgplem 24144 incistruhgr 29110 isgrpo 30525 hhssablo 31291 hhssnvt 31293 hhsssh 31297 gsumpart 33042 txomap 33794 tpr2rico 33872 elsx 34174 br2base 34250 dya2iocnrect 34262 sxbrsigalem5 34269 sibf0 34315 cvmlift2lem13 35299 |
Copyright terms: Public domain | W3C validator |