| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for Cartesian product. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| xpeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2820 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anbi1d 631 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
| 3 | 2 | opabbidv 5152 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
| 4 | df-xp 5617 | . 2 ⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
| 5 | df-xp 5617 | . 2 ⊢ (𝐵 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
| 6 | 3, 4, 5 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {copab 5148 × cxp 5609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-opab 5149 df-xp 5617 |
| This theorem is referenced by: xpeq12 5636 xpeq1i 5637 xpeq1d 5640 opthprc 5675 dmxpid 5865 reseq2 5918 xpnz 6101 xpdisj1 6103 xpcan2 6119 xpima 6124 unixp 6224 unixpid 6226 naddcllem 8586 pmvalg 8756 xpsneng 8970 xpcomeng 8977 xpdom2g 8981 fodomr 9036 unxpdom 9138 fodomfir 9207 marypha1lem 9312 iundom2g 10426 hashxplem 14335 dmtrclfv 14920 ramcl 16936 efgval 19624 frgpval 19665 frlmval 21680 txuni2 23475 txbas 23477 txopn 23512 txrest 23541 txdis 23542 txdis1cn 23545 tx1stc 23560 tmdgsum 24005 qustgplem 24031 incistruhgr 29052 isgrpo 30469 hhssablo 31235 hhssnvt 31237 hhsssh 31241 gsumpart 33029 txomap 33839 tpr2rico 33917 elsx 34199 br2base 34274 dya2iocnrect 34286 sxbrsigalem5 34293 sibf0 34339 cvmlift2lem13 35351 |
| Copyright terms: Public domain | W3C validator |