![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for Cartesian product. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
xpeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2848 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | anbi1d 623 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
3 | 2 | opabbidv 4954 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
4 | df-xp 5363 | . 2 ⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
5 | df-xp 5363 | . 2 ⊢ (𝐵 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
6 | 3, 4, 5 | 3eqtr4g 2839 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 {copab 4950 × cxp 5355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-opab 4951 df-xp 5363 |
This theorem is referenced by: xpeq12 5382 xpeq1i 5383 xpeq1d 5386 opthprc 5415 dmxpid 5592 reseq2 5639 xpnz 5809 xpdisj1 5811 xpcan2 5827 xpima 5832 unixp 5924 unixpid 5926 pmvalg 8153 xpsneng 8335 xpcomeng 8342 xpdom2g 8346 fodomr 8401 unxpdom 8457 xpfi 8521 marypha1lem 8629 cdaval 9329 iundom2g 9699 hashxplem 13538 dmtrclfv 14170 ramcl 16141 efgval 18518 frgpval 18561 frlmval 20495 txuni2 21781 txbas 21783 txopn 21818 txrest 21847 txdis 21848 txdis1cn 21851 tx1stc 21866 tmdgsum 22311 qustgplem 22336 incistruhgr 26431 isgrpo 27928 hhssablo 28696 hhssnvt 28698 hhsssh 28702 txomap 30503 tpr2rico 30560 elsx 30859 br2base 30933 dya2iocnrect 30945 sxbrsigalem5 30952 sibf0 30998 cvmlift2lem13 31900 |
Copyright terms: Public domain | W3C validator |