| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for Cartesian product. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| xpeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2818 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anbi1d 631 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
| 3 | 2 | opabbidv 5176 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
| 4 | df-xp 5647 | . 2 ⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
| 5 | df-xp 5647 | . 2 ⊢ (𝐵 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
| 6 | 3, 4, 5 | 3eqtr4g 2790 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {copab 5172 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-opab 5173 df-xp 5647 |
| This theorem is referenced by: xpeq12 5666 xpeq1i 5667 xpeq1d 5670 opthprc 5705 dmxpid 5897 reseq2 5948 xpnz 6135 xpdisj1 6137 xpcan2 6153 xpima 6158 unixp 6258 unixpid 6260 naddcllem 8643 pmvalg 8813 xpsneng 9030 xpcomeng 9038 xpdom2g 9042 fodomr 9098 unxpdom 9207 xpfiOLD 9277 fodomfir 9286 marypha1lem 9391 iundom2g 10500 hashxplem 14405 dmtrclfv 14991 ramcl 17007 efgval 19654 frgpval 19695 frlmval 21664 txuni2 23459 txbas 23461 txopn 23496 txrest 23525 txdis 23526 txdis1cn 23529 tx1stc 23544 tmdgsum 23989 qustgplem 24015 incistruhgr 29013 isgrpo 30433 hhssablo 31199 hhssnvt 31201 hhsssh 31205 gsumpart 33004 txomap 33831 tpr2rico 33909 elsx 34191 br2base 34267 dya2iocnrect 34279 sxbrsigalem5 34286 sibf0 34332 cvmlift2lem13 35309 |
| Copyright terms: Public domain | W3C validator |