Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for Cartesian product. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
xpeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2827 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | anbi1d 629 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
3 | 2 | opabbidv 5136 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
4 | df-xp 5586 | . 2 ⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
5 | df-xp 5586 | . 2 ⊢ (𝐵 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
6 | 3, 4, 5 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {copab 5132 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-opab 5133 df-xp 5586 |
This theorem is referenced by: xpeq12 5605 xpeq1i 5606 xpeq1d 5609 opthprc 5642 dmxpid 5828 reseq2 5875 xpnz 6051 xpdisj1 6053 xpcan2 6069 xpima 6074 unixp 6174 unixpid 6176 pmvalg 8584 xpsneng 8797 xpcomeng 8804 xpdom2g 8808 fodomr 8864 unxpdom 8959 xpfi 9015 marypha1lem 9122 iundom2g 10227 hashxplem 14076 dmtrclfv 14657 ramcl 16658 efgval 19238 frgpval 19279 frlmval 20865 txuni2 22624 txbas 22626 txopn 22661 txrest 22690 txdis 22691 txdis1cn 22694 tx1stc 22709 tmdgsum 23154 qustgplem 23180 incistruhgr 27352 isgrpo 28760 hhssablo 29526 hhssnvt 29528 hhsssh 29532 gsumpart 31217 txomap 31686 tpr2rico 31764 elsx 32062 br2base 32136 dya2iocnrect 32148 sxbrsigalem5 32155 sibf0 32201 cvmlift2lem13 33177 naddcllem 33758 |
Copyright terms: Public domain | W3C validator |