![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for Cartesian product. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
xpeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2823 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | anbi1d 631 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
3 | 2 | opabbidv 5215 | . 2 ⊢ (𝐴 = 𝐵 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
4 | df-xp 5683 | . 2 ⊢ (𝐴 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
5 | df-xp 5683 | . 2 ⊢ (𝐵 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
6 | 3, 4, 5 | 3eqtr4g 2798 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {copab 5211 × cxp 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-opab 5212 df-xp 5683 |
This theorem is referenced by: xpeq12 5702 xpeq1i 5703 xpeq1d 5706 opthprc 5741 dmxpid 5930 reseq2 5977 xpnz 6159 xpdisj1 6161 xpcan2 6177 xpima 6182 unixp 6282 unixpid 6284 naddcllem 8675 pmvalg 8831 xpsneng 9056 xpcomeng 9064 xpdom2g 9068 fodomr 9128 unxpdom 9253 xpfiOLD 9318 marypha1lem 9428 iundom2g 10535 hashxplem 14393 dmtrclfv 14965 ramcl 16962 efgval 19585 frgpval 19626 frlmval 21303 txuni2 23069 txbas 23071 txopn 23106 txrest 23135 txdis 23136 txdis1cn 23139 tx1stc 23154 tmdgsum 23599 qustgplem 23625 incistruhgr 28339 isgrpo 29750 hhssablo 30516 hhssnvt 30518 hhsssh 30522 gsumpart 32207 txomap 32814 tpr2rico 32892 elsx 33192 br2base 33268 dya2iocnrect 33280 sxbrsigalem5 33287 sibf0 33333 cvmlift2lem13 34306 |
Copyright terms: Public domain | W3C validator |