| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for Cartesian product. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| xpeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2823 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anbi1d 631 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
| 3 | 2 | opabbidv 5185 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
| 4 | df-xp 5660 | . 2 ⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
| 5 | df-xp 5660 | . 2 ⊢ (𝐵 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
| 6 | 3, 4, 5 | 3eqtr4g 2795 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {copab 5181 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-opab 5182 df-xp 5660 |
| This theorem is referenced by: xpeq12 5679 xpeq1i 5680 xpeq1d 5683 opthprc 5718 dmxpid 5910 reseq2 5961 xpnz 6148 xpdisj1 6150 xpcan2 6166 xpima 6171 unixp 6271 unixpid 6273 naddcllem 8686 pmvalg 8849 xpsneng 9068 xpcomeng 9076 xpdom2g 9080 fodomr 9140 unxpdom 9259 xpfiOLD 9329 fodomfir 9338 marypha1lem 9443 iundom2g 10552 hashxplem 14449 dmtrclfv 15035 ramcl 17047 efgval 19696 frgpval 19737 frlmval 21706 txuni2 23501 txbas 23503 txopn 23538 txrest 23567 txdis 23568 txdis1cn 23571 tx1stc 23586 tmdgsum 24031 qustgplem 24057 incistruhgr 29004 isgrpo 30424 hhssablo 31190 hhssnvt 31192 hhsssh 31196 gsumpart 32997 txomap 33811 tpr2rico 33889 elsx 34171 br2base 34247 dya2iocnrect 34259 sxbrsigalem5 34266 sibf0 34312 cvmlift2lem13 35283 |
| Copyright terms: Public domain | W3C validator |