| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for Cartesian product. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| xpeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2822 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anbi1d 631 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
| 3 | 2 | opabbidv 5161 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
| 4 | df-xp 5627 | . 2 ⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
| 5 | df-xp 5627 | . 2 ⊢ (𝐵 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
| 6 | 3, 4, 5 | 3eqtr4g 2793 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {copab 5157 × cxp 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-opab 5158 df-xp 5627 |
| This theorem is referenced by: xpeq12 5646 xpeq1i 5647 xpeq1d 5650 opthprc 5685 dmxpid 5876 reseq2 5930 xpnz 6114 xpdisj1 6116 xpcan2 6132 xpima 6137 unixp 6237 unixpid 6239 naddcllem 8600 pmvalg 8770 xpsneng 8986 xpcomeng 8993 xpdom2g 8997 fodomr 9052 unxpdom 9154 fodomfir 9223 marypha1lem 9328 iundom2g 10442 hashxplem 14347 dmtrclfv 14932 ramcl 16948 efgval 19637 frgpval 19678 frlmval 21694 txuni2 23500 txbas 23502 txopn 23537 txrest 23566 txdis 23567 txdis1cn 23570 tx1stc 23585 tmdgsum 24030 qustgplem 24056 incistruhgr 29078 isgrpo 30498 hhssablo 31264 hhssnvt 31266 hhsssh 31270 gsumpart 33074 txomap 33919 tpr2rico 33997 elsx 34279 br2base 34354 dya2iocnrect 34366 sxbrsigalem5 34373 sibf0 34419 cvmlift2lem13 35431 |
| Copyright terms: Public domain | W3C validator |