| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for Cartesian product. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| xpeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anbi1d 631 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
| 3 | 2 | opabbidv 5168 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
| 4 | df-xp 5637 | . 2 ⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
| 5 | df-xp 5637 | . 2 ⊢ (𝐵 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
| 6 | 3, 4, 5 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {copab 5164 × cxp 5629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5165 df-xp 5637 |
| This theorem is referenced by: xpeq12 5656 xpeq1i 5657 xpeq1d 5660 opthprc 5695 dmxpid 5883 reseq2 5934 xpnz 6120 xpdisj1 6122 xpcan2 6138 xpima 6143 unixp 6243 unixpid 6245 naddcllem 8617 pmvalg 8787 xpsneng 9003 xpcomeng 9010 xpdom2g 9014 fodomr 9069 unxpdom 9176 xpfiOLD 9246 fodomfir 9255 marypha1lem 9360 iundom2g 10469 hashxplem 14374 dmtrclfv 14960 ramcl 16976 efgval 19623 frgpval 19664 frlmval 21633 txuni2 23428 txbas 23430 txopn 23465 txrest 23494 txdis 23495 txdis1cn 23498 tx1stc 23513 tmdgsum 23958 qustgplem 23984 incistruhgr 28982 isgrpo 30399 hhssablo 31165 hhssnvt 31167 hhsssh 31171 gsumpart 32970 txomap 33797 tpr2rico 33875 elsx 34157 br2base 34233 dya2iocnrect 34245 sxbrsigalem5 34252 sibf0 34298 cvmlift2lem13 35275 |
| Copyright terms: Public domain | W3C validator |