| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordsucuni | Structured version Visualization version GIF version | ||
| Description: An ordinal class is a subclass of the successor of its union. (Contributed by NM, 12-Sep-2003.) |
| Ref | Expression |
|---|---|
| ordsucuni | ⊢ (Ord 𝐴 → 𝐴 ⊆ suc ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsson 7711 | . 2 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 2 | onsucuni 7753 | . 2 ⊢ (𝐴 ⊆ On → 𝐴 ⊆ suc ∪ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (Ord 𝐴 → 𝐴 ⊆ suc ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3900 ∪ cuni 4857 Ord word 6301 Oncon0 6302 suc csuc 6304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6305 df-on 6306 df-suc 6308 |
| This theorem is referenced by: orduniorsuc 7755 |
| Copyright terms: Public domain | W3C validator |