MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucuni Structured version   Visualization version   GIF version

Theorem ordsucuni 7856
Description: An ordinal class is a subclass of the successor of its union. (Contributed by NM, 12-Sep-2003.)
Assertion
Ref Expression
ordsucuni (Ord 𝐴𝐴 ⊆ suc 𝐴)

Proof of Theorem ordsucuni
StepHypRef Expression
1 ordsson 7809 . 2 (Ord 𝐴𝐴 ⊆ On)
2 onsucuni 7855 . 2 (𝐴 ⊆ On → 𝐴 ⊆ suc 𝐴)
31, 2syl 17 1 (Ord 𝐴𝐴 ⊆ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3966   cuni 4915  Ord word 6391  Oncon0 6392  suc csuc 6394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-tr 5269  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-ord 6395  df-on 6396  df-suc 6398
This theorem is referenced by:  orduniorsuc  7857
  Copyright terms: Public domain W3C validator