MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucuni Structured version   Visualization version   GIF version

Theorem ordsucuni 7806
Description: An ordinal class is a subclass of the successor of its union. (Contributed by NM, 12-Sep-2003.)
Assertion
Ref Expression
ordsucuni (Ord 𝐴𝐴 ⊆ suc 𝐴)

Proof of Theorem ordsucuni
StepHypRef Expression
1 ordsson 7761 . 2 (Ord 𝐴𝐴 ⊆ On)
2 onsucuni 7805 . 2 (𝐴 ⊆ On → 𝐴 ⊆ suc 𝐴)
31, 2syl 17 1 (Ord 𝐴𝐴 ⊆ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3916   cuni 4873  Ord word 6333  Oncon0 6334  suc csuc 6336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-tr 5217  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-ord 6337  df-on 6338  df-suc 6340
This theorem is referenced by:  orduniorsuc  7807
  Copyright terms: Public domain W3C validator