MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucuni Structured version   Visualization version   GIF version

Theorem ordsucuni 7814
Description: An ordinal class is a subclass of the successor of its union. (Contributed by NM, 12-Sep-2003.)
Assertion
Ref Expression
ordsucuni (Ord 𝐴𝐴 ⊆ suc 𝐴)

Proof of Theorem ordsucuni
StepHypRef Expression
1 ordsson 7767 . 2 (Ord 𝐴𝐴 ⊆ On)
2 onsucuni 7813 . 2 (𝐴 ⊆ On → 𝐴 ⊆ suc 𝐴)
31, 2syl 17 1 (Ord 𝐴𝐴 ⊆ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3943   cuni 4902  Ord word 6357  Oncon0 6358  suc csuc 6360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-tr 5259  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-ord 6361  df-on 6362  df-suc 6364
This theorem is referenced by:  orduniorsuc  7815
  Copyright terms: Public domain W3C validator