| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordsucuni | Structured version Visualization version GIF version | ||
| Description: An ordinal class is a subclass of the successor of its union. (Contributed by NM, 12-Sep-2003.) |
| Ref | Expression |
|---|---|
| ordsucuni | ⊢ (Ord 𝐴 → 𝐴 ⊆ suc ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsson 7722 | . 2 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 2 | onsucuni 7764 | . 2 ⊢ (𝐴 ⊆ On → 𝐴 ⊆ suc ∪ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (Ord 𝐴 → 𝐴 ⊆ suc ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3897 ∪ cuni 4858 Ord word 6311 Oncon0 6312 suc csuc 6314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6315 df-on 6316 df-suc 6318 |
| This theorem is referenced by: orduniorsuc 7766 |
| Copyright terms: Public domain | W3C validator |