MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsucuni Structured version   Visualization version   GIF version

Theorem onsucuni 7764
Description: A class of ordinal numbers is a subclass of the successor of its union. Similar to Proposition 7.26 of [TakeutiZaring] p. 41. (Contributed by NM, 19-Sep-2003.)
Assertion
Ref Expression
onsucuni (𝐴 ⊆ On → 𝐴 ⊆ suc 𝐴)

Proof of Theorem onsucuni
StepHypRef Expression
1 ssorduni 7718 . 2 (𝐴 ⊆ On → Ord 𝐴)
2 ssid 3953 . . 3 𝐴 𝐴
3 ordunisssuc 6419 . . 3 ((𝐴 ⊆ On ∧ Ord 𝐴) → ( 𝐴 𝐴𝐴 ⊆ suc 𝐴))
42, 3mpbii 233 . 2 ((𝐴 ⊆ On ∧ Ord 𝐴) → 𝐴 ⊆ suc 𝐴)
51, 4mpdan 687 1 (𝐴 ⊆ On → 𝐴 ⊆ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3898   cuni 4858  Ord word 6310  Oncon0 6311  suc csuc 6313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-tr 5201  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6314  df-on 6315  df-suc 6317
This theorem is referenced by:  ordsucuni  7765  cofon1  8593  cofon2  8594  naddcllem  8597  tz9.12lem3  9689  onssnum  9938  dfac12lem2  10043  ackbij1lem16  10132  cfslb2n  10166  hsmexlem1  10324  noeta2  27725  etasslt2  27756  zs12bday  28395  cantnfub2  43439  onsucunifi  43487
  Copyright terms: Public domain W3C validator