| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsucuni | Structured version Visualization version GIF version | ||
| Description: A class of ordinal numbers is a subclass of the successor of its union. Similar to Proposition 7.26 of [TakeutiZaring] p. 41. (Contributed by NM, 19-Sep-2003.) |
| Ref | Expression |
|---|---|
| onsucuni | ⊢ (𝐴 ⊆ On → 𝐴 ⊆ suc ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssorduni 7712 | . 2 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
| 2 | ssid 3957 | . . 3 ⊢ ∪ 𝐴 ⊆ ∪ 𝐴 | |
| 3 | ordunisssuc 6414 | . . 3 ⊢ ((𝐴 ⊆ On ∧ Ord ∪ 𝐴) → (∪ 𝐴 ⊆ ∪ 𝐴 ↔ 𝐴 ⊆ suc ∪ 𝐴)) | |
| 4 | 2, 3 | mpbii 233 | . 2 ⊢ ((𝐴 ⊆ On ∧ Ord ∪ 𝐴) → 𝐴 ⊆ suc ∪ 𝐴) |
| 5 | 1, 4 | mpdan 687 | 1 ⊢ (𝐴 ⊆ On → 𝐴 ⊆ suc ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3902 ∪ cuni 4859 Ord word 6305 Oncon0 6306 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-on 6310 df-suc 6312 |
| This theorem is referenced by: ordsucuni 7759 cofon1 8587 cofon2 8588 naddcllem 8591 tz9.12lem3 9679 onssnum 9928 dfac12lem2 10033 ackbij1lem16 10122 cfslb2n 10156 hsmexlem1 10314 noeta2 27722 etasslt2 27753 zs12bday 28392 cantnfub2 43354 onsucunifi 43402 |
| Copyright terms: Public domain | W3C validator |