MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsucuni Structured version   Visualization version   GIF version

Theorem onsucuni 7767
Description: A class of ordinal numbers is a subclass of the successor of its union. Similar to Proposition 7.26 of [TakeutiZaring] p. 41. (Contributed by NM, 19-Sep-2003.)
Assertion
Ref Expression
onsucuni (𝐴 ⊆ On → 𝐴 ⊆ suc 𝐴)

Proof of Theorem onsucuni
StepHypRef Expression
1 ssorduni 7719 . 2 (𝐴 ⊆ On → Ord 𝐴)
2 ssid 3960 . . 3 𝐴 𝐴
3 ordunisssuc 6419 . . 3 ((𝐴 ⊆ On ∧ Ord 𝐴) → ( 𝐴 𝐴𝐴 ⊆ suc 𝐴))
42, 3mpbii 233 . 2 ((𝐴 ⊆ On ∧ Ord 𝐴) → 𝐴 ⊆ suc 𝐴)
51, 4mpdan 687 1 (𝐴 ⊆ On → 𝐴 ⊆ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3905   cuni 4861  Ord word 6310  Oncon0 6311  suc csuc 6313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-ord 6314  df-on 6315  df-suc 6317
This theorem is referenced by:  ordsucuni  7768  cofon1  8597  cofon2  8598  naddcllem  8601  tz9.12lem3  9704  onssnum  9953  dfac12lem2  10058  ackbij1lem16  10147  cfslb2n  10181  hsmexlem1  10339  noeta2  27713  etasslt2  27743  zs12bday  28379  cantnfub2  43295  onsucunifi  43343
  Copyright terms: Public domain W3C validator