| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsucuni | Structured version Visualization version GIF version | ||
| Description: A class of ordinal numbers is a subclass of the successor of its union. Similar to Proposition 7.26 of [TakeutiZaring] p. 41. (Contributed by NM, 19-Sep-2003.) |
| Ref | Expression |
|---|---|
| onsucuni | ⊢ (𝐴 ⊆ On → 𝐴 ⊆ suc ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssorduni 7718 | . 2 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
| 2 | ssid 3953 | . . 3 ⊢ ∪ 𝐴 ⊆ ∪ 𝐴 | |
| 3 | ordunisssuc 6419 | . . 3 ⊢ ((𝐴 ⊆ On ∧ Ord ∪ 𝐴) → (∪ 𝐴 ⊆ ∪ 𝐴 ↔ 𝐴 ⊆ suc ∪ 𝐴)) | |
| 4 | 2, 3 | mpbii 233 | . 2 ⊢ ((𝐴 ⊆ On ∧ Ord ∪ 𝐴) → 𝐴 ⊆ suc ∪ 𝐴) |
| 5 | 1, 4 | mpdan 687 | 1 ⊢ (𝐴 ⊆ On → 𝐴 ⊆ suc ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3898 ∪ cuni 4858 Ord word 6310 Oncon0 6311 suc csuc 6313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6314 df-on 6315 df-suc 6317 |
| This theorem is referenced by: ordsucuni 7765 cofon1 8593 cofon2 8594 naddcllem 8597 tz9.12lem3 9689 onssnum 9938 dfac12lem2 10043 ackbij1lem16 10132 cfslb2n 10166 hsmexlem1 10324 noeta2 27725 etasslt2 27756 zs12bday 28395 cantnfub2 43439 onsucunifi 43487 |
| Copyright terms: Public domain | W3C validator |