| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsucuni | Structured version Visualization version GIF version | ||
| Description: A class of ordinal numbers is a subclass of the successor of its union. Similar to Proposition 7.26 of [TakeutiZaring] p. 41. (Contributed by NM, 19-Sep-2003.) |
| Ref | Expression |
|---|---|
| onsucuni | ⊢ (𝐴 ⊆ On → 𝐴 ⊆ suc ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssorduni 7719 | . 2 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
| 2 | ssid 3960 | . . 3 ⊢ ∪ 𝐴 ⊆ ∪ 𝐴 | |
| 3 | ordunisssuc 6419 | . . 3 ⊢ ((𝐴 ⊆ On ∧ Ord ∪ 𝐴) → (∪ 𝐴 ⊆ ∪ 𝐴 ↔ 𝐴 ⊆ suc ∪ 𝐴)) | |
| 4 | 2, 3 | mpbii 233 | . 2 ⊢ ((𝐴 ⊆ On ∧ Ord ∪ 𝐴) → 𝐴 ⊆ suc ∪ 𝐴) |
| 5 | 1, 4 | mpdan 687 | 1 ⊢ (𝐴 ⊆ On → 𝐴 ⊆ suc ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3905 ∪ cuni 4861 Ord word 6310 Oncon0 6311 suc csuc 6313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-on 6315 df-suc 6317 |
| This theorem is referenced by: ordsucuni 7768 cofon1 8597 cofon2 8598 naddcllem 8601 tz9.12lem3 9704 onssnum 9953 dfac12lem2 10058 ackbij1lem16 10147 cfslb2n 10181 hsmexlem1 10339 noeta2 27713 etasslt2 27743 zs12bday 28379 cantnfub2 43295 onsucunifi 43343 |
| Copyright terms: Public domain | W3C validator |