MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsucuni Structured version   Visualization version   GIF version

Theorem onsucuni 7864
Description: A class of ordinal numbers is a subclass of the successor of its union. Similar to Proposition 7.26 of [TakeutiZaring] p. 41. (Contributed by NM, 19-Sep-2003.)
Assertion
Ref Expression
onsucuni (𝐴 ⊆ On → 𝐴 ⊆ suc 𝐴)

Proof of Theorem onsucuni
StepHypRef Expression
1 ssorduni 7814 . 2 (𝐴 ⊆ On → Ord 𝐴)
2 ssid 4031 . . 3 𝐴 𝐴
3 ordunisssuc 6501 . . 3 ((𝐴 ⊆ On ∧ Ord 𝐴) → ( 𝐴 𝐴𝐴 ⊆ suc 𝐴))
42, 3mpbii 233 . 2 ((𝐴 ⊆ On ∧ Ord 𝐴) → 𝐴 ⊆ suc 𝐴)
51, 4mpdan 686 1 (𝐴 ⊆ On → 𝐴 ⊆ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3976   cuni 4931  Ord word 6394  Oncon0 6395  suc csuc 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-suc 6401
This theorem is referenced by:  ordsucuni  7865  cofon1  8728  cofon2  8729  naddcllem  8732  tz9.12lem3  9858  onssnum  10109  dfac12lem2  10214  ackbij1lem16  10303  cfslb2n  10337  hsmexlem1  10495  noeta2  27847  etasslt2  27877  zs12bday  28442  cantnfub2  43284  onsucunifi  43332
  Copyright terms: Public domain W3C validator