![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordsson | Structured version Visualization version GIF version |
Description: Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
ordsson | ⊢ (Ord 𝐴 → 𝐴 ⊆ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordon 7766 | . 2 ⊢ Ord On | |
2 | ordeleqon 7771 | . . . . 5 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | |
3 | 2 | biimpi 215 | . . . 4 ⊢ (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On)) |
4 | 3 | adantr 479 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord On) → (𝐴 ∈ On ∨ 𝐴 = On)) |
5 | ordsseleq 6392 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord On) → (𝐴 ⊆ On ↔ (𝐴 ∈ On ∨ 𝐴 = On))) | |
6 | 4, 5 | mpbird 256 | . 2 ⊢ ((Ord 𝐴 ∧ Ord On) → 𝐴 ⊆ On) |
7 | 1, 6 | mpan2 687 | 1 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 843 = wceq 1539 ∈ wcel 2104 ⊆ wss 3947 Ord word 6362 Oncon0 6363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6366 df-on 6367 |
This theorem is referenced by: dford5 7773 onss 7774 orduni 7779 ordsuci 7798 ordsucuniel 7814 ordsucuni 7819 iordsmo 8359 dfrecs3 8374 dfrecs3OLD 8375 tfr2b 8398 tz7.44-2 8409 ordiso2 9512 ordtypelem7 9521 ordtypelem8 9522 oiid 9538 r1tr 9773 r1ordg 9775 r1ord3g 9776 r1pwss 9781 r1val1 9783 rankwflemb 9790 r1elwf 9793 rankr1ai 9795 cflim2 10260 cfss 10262 cfslb 10263 cfslbn 10264 cfslb2n 10265 cofsmo 10266 coftr 10270 inaprc 10833 nosepon 27404 satfn 34644 rdgprc 35070 limsucncmpi 35633 limexissup 42333 limexissupab 42335 nadd2rabord 42437 nadd1rabord 42441 |
Copyright terms: Public domain | W3C validator |