MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsson Structured version   Visualization version   GIF version

Theorem ordsson 7506
Description: Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
ordsson (Ord 𝐴𝐴 ⊆ On)

Proof of Theorem ordsson
StepHypRef Expression
1 ordon 7500 . 2 Ord On
2 ordeleqon 7505 . . . . 5 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
32biimpi 218 . . . 4 (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On))
43adantr 483 . . 3 ((Ord 𝐴 ∧ Ord On) → (𝐴 ∈ On ∨ 𝐴 = On))
5 ordsseleq 6222 . . 3 ((Ord 𝐴 ∧ Ord On) → (𝐴 ⊆ On ↔ (𝐴 ∈ On ∨ 𝐴 = On)))
64, 5mpbird 259 . 2 ((Ord 𝐴 ∧ Ord On) → 𝐴 ⊆ On)
71, 6mpan2 689 1 (Ord 𝐴𝐴 ⊆ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  wss 3938  Ord word 6192  Oncon0 6193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-tr 5175  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-ord 6196  df-on 6197
This theorem is referenced by:  onss  7507  orduni  7511  ordsucuniel  7541  ordsucuni  7546  iordsmo  7996  dfrecs3  8011  tfr2b  8034  tz7.44-2  8045  ordiso2  8981  ordtypelem7  8990  ordtypelem8  8991  oiid  9007  r1tr  9207  r1ordg  9209  r1ord3g  9210  r1pwss  9215  r1val1  9217  rankwflemb  9224  r1elwf  9227  rankr1ai  9229  cflim2  9687  cfss  9689  cfslb  9690  cfslbn  9691  cfslb2n  9692  cofsmo  9693  coftr  9697  inaprc  10260  satfn  32604  dford5  32959  rdgprc  33041  nosepon  33174  limsucncmpi  33795
  Copyright terms: Public domain W3C validator