| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordsson | Structured version Visualization version GIF version | ||
| Description: Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| Ref | Expression |
|---|---|
| ordsson | ⊢ (Ord 𝐴 → 𝐴 ⊆ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordon 7710 | . 2 ⊢ Ord On | |
| 2 | ordeleqon 7715 | . . . . 5 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | |
| 3 | 2 | biimpi 216 | . . . 4 ⊢ (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On)) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord On) → (𝐴 ∈ On ∨ 𝐴 = On)) |
| 5 | ordsseleq 6335 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord On) → (𝐴 ⊆ On ↔ (𝐴 ∈ On ∨ 𝐴 = On))) | |
| 6 | 4, 5 | mpbird 257 | . 2 ⊢ ((Ord 𝐴 ∧ Ord On) → 𝐴 ⊆ On) |
| 7 | 1, 6 | mpan2 691 | 1 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 Ord word 6305 Oncon0 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-on 6310 |
| This theorem is referenced by: dford5 7717 onss 7718 orduni 7722 ordsuci 7741 ordsucuniel 7754 ordsucuni 7759 iordsmo 8277 dfrecs3 8292 tfr2b 8315 tz7.44-2 8326 ordiso2 9401 ordtypelem7 9410 ordtypelem8 9411 oiid 9427 r1tr 9666 r1ordg 9668 r1ord3g 9669 r1pwss 9674 r1val1 9676 rankwflemb 9683 r1elwf 9686 rankr1ai 9688 cflim2 10151 cfss 10153 cfslb 10154 cfslbn 10155 cfslb2n 10156 cofsmo 10157 coftr 10161 inaprc 10724 nosepon 27602 fissorduni 35096 r1filimi 35106 satfn 35387 rdgprc 35827 limsucncmpi 36478 limexissup 43313 limexissupab 43315 nadd2rabord 43417 nadd1rabord 43421 |
| Copyright terms: Public domain | W3C validator |