MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsson Structured version   Visualization version   GIF version

Theorem ordsson 7777
Description: Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
ordsson (Ord 𝐴𝐴 ⊆ On)

Proof of Theorem ordsson
StepHypRef Expression
1 ordon 7771 . 2 Ord On
2 ordeleqon 7776 . . . . 5 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
32biimpi 216 . . . 4 (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On))
43adantr 480 . . 3 ((Ord 𝐴 ∧ Ord On) → (𝐴 ∈ On ∨ 𝐴 = On))
5 ordsseleq 6381 . . 3 ((Ord 𝐴 ∧ Ord On) → (𝐴 ⊆ On ↔ (𝐴 ∈ On ∨ 𝐴 = On)))
64, 5mpbird 257 . 2 ((Ord 𝐴 ∧ Ord On) → 𝐴 ⊆ On)
71, 6mpan2 691 1 (Ord 𝐴𝐴 ⊆ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  wss 3926  Ord word 6351  Oncon0 6352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355  df-on 6356
This theorem is referenced by:  dford5  7778  onss  7779  orduni  7783  ordsuci  7802  ordsucuniel  7818  ordsucuni  7823  iordsmo  8371  dfrecs3  8386  dfrecs3OLD  8387  tfr2b  8410  tz7.44-2  8421  ordiso2  9529  ordtypelem7  9538  ordtypelem8  9539  oiid  9555  r1tr  9790  r1ordg  9792  r1ord3g  9793  r1pwss  9798  r1val1  9800  rankwflemb  9807  r1elwf  9810  rankr1ai  9812  cflim2  10277  cfss  10279  cfslb  10280  cfslbn  10281  cfslb2n  10282  cofsmo  10283  coftr  10287  inaprc  10850  nosepon  27629  satfn  35377  rdgprc  35812  limsucncmpi  36463  limexissup  43305  limexissupab  43307  nadd2rabord  43409  nadd1rabord  43413
  Copyright terms: Public domain W3C validator