![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordsson | Structured version Visualization version GIF version |
Description: Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
ordsson | ⊢ (Ord 𝐴 → 𝐴 ⊆ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordon 7763 | . 2 ⊢ Ord On | |
2 | ordeleqon 7768 | . . . . 5 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | |
3 | 2 | biimpi 215 | . . . 4 ⊢ (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On)) |
4 | 3 | adantr 481 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord On) → (𝐴 ∈ On ∨ 𝐴 = On)) |
5 | ordsseleq 6393 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord On) → (𝐴 ⊆ On ↔ (𝐴 ∈ On ∨ 𝐴 = On))) | |
6 | 4, 5 | mpbird 256 | . 2 ⊢ ((Ord 𝐴 ∧ Ord On) → 𝐴 ⊆ On) |
7 | 1, 6 | mpan2 689 | 1 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ⊆ wss 3948 Ord word 6363 Oncon0 6364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 |
This theorem is referenced by: dford5 7770 onss 7771 orduni 7776 ordsuci 7795 ordsucuniel 7811 ordsucuni 7816 iordsmo 8356 dfrecs3 8371 dfrecs3OLD 8372 tfr2b 8395 tz7.44-2 8406 ordiso2 9509 ordtypelem7 9518 ordtypelem8 9519 oiid 9535 r1tr 9770 r1ordg 9772 r1ord3g 9773 r1pwss 9778 r1val1 9780 rankwflemb 9787 r1elwf 9790 rankr1ai 9792 cflim2 10257 cfss 10259 cfslb 10260 cfslbn 10261 cfslb2n 10262 cofsmo 10263 coftr 10267 inaprc 10830 nosepon 27165 satfn 34341 rdgprc 34761 limsucncmpi 35325 limexissup 42021 limexissupab 42023 nadd2rabord 42125 nadd1rabord 42129 |
Copyright terms: Public domain | W3C validator |