| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordsson | Structured version Visualization version GIF version | ||
| Description: Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| Ref | Expression |
|---|---|
| ordsson | ⊢ (Ord 𝐴 → 𝐴 ⊆ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordon 7753 | . 2 ⊢ Ord On | |
| 2 | ordeleqon 7758 | . . . . 5 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | |
| 3 | 2 | biimpi 216 | . . . 4 ⊢ (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On)) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord On) → (𝐴 ∈ On ∨ 𝐴 = On)) |
| 5 | ordsseleq 6361 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord On) → (𝐴 ⊆ On ↔ (𝐴 ∈ On ∨ 𝐴 = On))) | |
| 6 | 4, 5 | mpbird 257 | . 2 ⊢ ((Ord 𝐴 ∧ Ord On) → 𝐴 ⊆ On) |
| 7 | 1, 6 | mpan2 691 | 1 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 Ord word 6331 Oncon0 6332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 |
| This theorem is referenced by: dford5 7760 onss 7761 orduni 7765 ordsuci 7784 ordsucuniel 7799 ordsucuni 7804 iordsmo 8326 dfrecs3 8341 tfr2b 8364 tz7.44-2 8375 ordiso2 9468 ordtypelem7 9477 ordtypelem8 9478 oiid 9494 r1tr 9729 r1ordg 9731 r1ord3g 9732 r1pwss 9737 r1val1 9739 rankwflemb 9746 r1elwf 9749 rankr1ai 9751 cflim2 10216 cfss 10218 cfslb 10219 cfslbn 10220 cfslb2n 10221 cofsmo 10222 coftr 10226 inaprc 10789 nosepon 27577 satfn 35342 rdgprc 35782 limsucncmpi 36433 limexissup 43270 limexissupab 43272 nadd2rabord 43374 nadd1rabord 43378 |
| Copyright terms: Public domain | W3C validator |