![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordsson | Structured version Visualization version GIF version |
Description: Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
ordsson | ⊢ (Ord 𝐴 → 𝐴 ⊆ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordon 7768 | . 2 ⊢ Ord On | |
2 | ordeleqon 7773 | . . . . 5 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | |
3 | 2 | biimpi 215 | . . . 4 ⊢ (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On)) |
4 | 3 | adantr 480 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord On) → (𝐴 ∈ On ∨ 𝐴 = On)) |
5 | ordsseleq 6393 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord On) → (𝐴 ⊆ On ↔ (𝐴 ∈ On ∨ 𝐴 = On))) | |
6 | 4, 5 | mpbird 257 | . 2 ⊢ ((Ord 𝐴 ∧ Ord On) → 𝐴 ⊆ On) |
7 | 1, 6 | mpan2 688 | 1 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ⊆ wss 3948 Ord word 6363 Oncon0 6364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 |
This theorem is referenced by: dford5 7775 onss 7776 orduni 7781 ordsuci 7800 ordsucuniel 7816 ordsucuni 7821 iordsmo 8363 dfrecs3 8378 dfrecs3OLD 8379 tfr2b 8402 tz7.44-2 8413 ordiso2 9516 ordtypelem7 9525 ordtypelem8 9526 oiid 9542 r1tr 9777 r1ordg 9779 r1ord3g 9780 r1pwss 9785 r1val1 9787 rankwflemb 9794 r1elwf 9797 rankr1ai 9799 cflim2 10264 cfss 10266 cfslb 10267 cfslbn 10268 cfslb2n 10269 cofsmo 10270 coftr 10274 inaprc 10837 nosepon 27510 satfn 34809 rdgprc 35235 limsucncmpi 35793 limexissup 42493 limexissupab 42495 nadd2rabord 42597 nadd1rabord 42601 |
Copyright terms: Public domain | W3C validator |