| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordsson | Structured version Visualization version GIF version | ||
| Description: Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| Ref | Expression |
|---|---|
| ordsson | ⊢ (Ord 𝐴 → 𝐴 ⊆ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordon 7756 | . 2 ⊢ Ord On | |
| 2 | ordeleqon 7761 | . . . . 5 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | |
| 3 | 2 | biimpi 216 | . . . 4 ⊢ (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On)) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord On) → (𝐴 ∈ On ∨ 𝐴 = On)) |
| 5 | ordsseleq 6364 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord On) → (𝐴 ⊆ On ↔ (𝐴 ∈ On ∨ 𝐴 = On))) | |
| 6 | 4, 5 | mpbird 257 | . 2 ⊢ ((Ord 𝐴 ∧ Ord On) → 𝐴 ⊆ On) |
| 7 | 1, 6 | mpan2 691 | 1 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 Ord word 6334 Oncon0 6335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 |
| This theorem is referenced by: dford5 7763 onss 7764 orduni 7768 ordsuci 7787 ordsucuniel 7802 ordsucuni 7807 iordsmo 8329 dfrecs3 8344 tfr2b 8367 tz7.44-2 8378 ordiso2 9475 ordtypelem7 9484 ordtypelem8 9485 oiid 9501 r1tr 9736 r1ordg 9738 r1ord3g 9739 r1pwss 9744 r1val1 9746 rankwflemb 9753 r1elwf 9756 rankr1ai 9758 cflim2 10223 cfss 10225 cfslb 10226 cfslbn 10227 cfslb2n 10228 cofsmo 10229 coftr 10233 inaprc 10796 nosepon 27584 satfn 35349 rdgprc 35789 limsucncmpi 36440 limexissup 43277 limexissupab 43279 nadd2rabord 43381 nadd1rabord 43385 |
| Copyright terms: Public domain | W3C validator |