| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordsson | Structured version Visualization version GIF version | ||
| Description: Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| Ref | Expression |
|---|---|
| ordsson | ⊢ (Ord 𝐴 → 𝐴 ⊆ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordon 7771 | . 2 ⊢ Ord On | |
| 2 | ordeleqon 7776 | . . . . 5 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | |
| 3 | 2 | biimpi 216 | . . . 4 ⊢ (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On)) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord On) → (𝐴 ∈ On ∨ 𝐴 = On)) |
| 5 | ordsseleq 6381 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord On) → (𝐴 ⊆ On ↔ (𝐴 ∈ On ∨ 𝐴 = On))) | |
| 6 | 4, 5 | mpbird 257 | . 2 ⊢ ((Ord 𝐴 ∧ Ord On) → 𝐴 ⊆ On) |
| 7 | 1, 6 | mpan2 691 | 1 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 Ord word 6351 Oncon0 6352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 |
| This theorem is referenced by: dford5 7778 onss 7779 orduni 7783 ordsuci 7802 ordsucuniel 7818 ordsucuni 7823 iordsmo 8371 dfrecs3 8386 dfrecs3OLD 8387 tfr2b 8410 tz7.44-2 8421 ordiso2 9529 ordtypelem7 9538 ordtypelem8 9539 oiid 9555 r1tr 9790 r1ordg 9792 r1ord3g 9793 r1pwss 9798 r1val1 9800 rankwflemb 9807 r1elwf 9810 rankr1ai 9812 cflim2 10277 cfss 10279 cfslb 10280 cfslbn 10281 cfslb2n 10282 cofsmo 10283 coftr 10287 inaprc 10850 nosepon 27629 satfn 35377 rdgprc 35812 limsucncmpi 36463 limexissup 43305 limexissupab 43307 nadd2rabord 43409 nadd1rabord 43413 |
| Copyright terms: Public domain | W3C validator |