MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onssr1 Structured version   Visualization version   GIF version

Theorem onssr1 9520
Description: Initial segments of the ordinals are contained in initial segments of the cumulative hierarchy. (Contributed by FL, 20-Apr-2011.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
onssr1 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))

Proof of Theorem onssr1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 r1funlim 9455 . . . . . . . . . 10 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 485 . . . . . . . . 9 Lim dom 𝑅1
3 limord 6310 . . . . . . . . 9 (Lim dom 𝑅1 → Ord dom 𝑅1)
4 ordtr1 6294 . . . . . . . . 9 (Ord dom 𝑅1 → ((𝑥𝐴𝐴 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1))
52, 3, 4mp2b 10 . . . . . . . 8 ((𝑥𝐴𝐴 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1)
65ancoms 458 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥 ∈ dom 𝑅1)
7 rankonidlem 9517 . . . . . . 7 (𝑥 ∈ dom 𝑅1 → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥))
86, 7syl 17 . . . . . 6 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥))
98simprd 495 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (rank‘𝑥) = 𝑥)
10 simpr 484 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥𝐴)
119, 10eqeltrd 2839 . . . 4 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (rank‘𝑥) ∈ 𝐴)
128simpld 494 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥 (𝑅1 “ On))
13 simpl 482 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝐴 ∈ dom 𝑅1)
14 rankr1ag 9491 . . . . 5 ((𝑥 (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → (𝑥 ∈ (𝑅1𝐴) ↔ (rank‘𝑥) ∈ 𝐴))
1512, 13, 14syl2anc 583 . . . 4 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (𝑥 ∈ (𝑅1𝐴) ↔ (rank‘𝑥) ∈ 𝐴))
1611, 15mpbird 256 . . 3 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥 ∈ (𝑅1𝐴))
1716ex 412 . 2 (𝐴 ∈ dom 𝑅1 → (𝑥𝐴𝑥 ∈ (𝑅1𝐴)))
1817ssrdv 3923 1 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wss 3883   cuni 4836  dom cdm 5580  cima 5583  Ord word 6250  Oncon0 6251  Lim wlim 6252  Fun wfun 6412  cfv 6418  𝑅1cr1 9451  rankcrnk 9452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-r1 9453  df-rank 9454
This theorem is referenced by:  rankr1id  9551  ackbij2  9930  wunom  10407  r1limwun  10423  inar1  10462  r1tskina  10469  r1rankcld  41738
  Copyright terms: Public domain W3C validator