| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onssr1 | Structured version Visualization version GIF version | ||
| Description: Initial segments of the ordinals are contained in initial segments of the cumulative hierarchy. (Contributed by FL, 20-Apr-2011.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| onssr1 | ⊢ (𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ (𝑅1‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1funlim 9719 | . . . . . . . . . 10 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 2 | 1 | simpri 485 | . . . . . . . . 9 ⊢ Lim dom 𝑅1 |
| 3 | limord 6393 | . . . . . . . . 9 ⊢ (Lim dom 𝑅1 → Ord dom 𝑅1) | |
| 4 | ordtr1 6376 | . . . . . . . . 9 ⊢ (Ord dom 𝑅1 → ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1)) | |
| 5 | 2, 3, 4 | mp2b 10 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1) |
| 6 | 5 | ancoms 458 | . . . . . . 7 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ dom 𝑅1) |
| 7 | rankonidlem 9781 | . . . . . . 7 ⊢ (𝑥 ∈ dom 𝑅1 → (𝑥 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥)) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥)) |
| 9 | 8 | simprd 495 | . . . . 5 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → (rank‘𝑥) = 𝑥) |
| 10 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 11 | 9, 10 | eqeltrd 2828 | . . . 4 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → (rank‘𝑥) ∈ 𝐴) |
| 12 | 8 | simpld 494 | . . . . 5 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ∪ (𝑅1 “ On)) |
| 13 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ dom 𝑅1) | |
| 14 | rankr1ag 9755 | . . . . 5 ⊢ ((𝑥 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → (𝑥 ∈ (𝑅1‘𝐴) ↔ (rank‘𝑥) ∈ 𝐴)) | |
| 15 | 12, 13, 14 | syl2anc 584 | . . . 4 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ (𝑅1‘𝐴) ↔ (rank‘𝑥) ∈ 𝐴)) |
| 16 | 11, 15 | mpbird 257 | . . 3 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (𝑅1‘𝐴)) |
| 17 | 16 | ex 412 | . 2 ⊢ (𝐴 ∈ dom 𝑅1 → (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝑅1‘𝐴))) |
| 18 | 17 | ssrdv 3952 | 1 ⊢ (𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ (𝑅1‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ∪ cuni 4871 dom cdm 5638 “ cima 5641 Ord word 6331 Oncon0 6332 Lim wlim 6333 Fun wfun 6505 ‘cfv 6511 𝑅1cr1 9715 rankcrnk 9716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-r1 9717 df-rank 9718 |
| This theorem is referenced by: rankr1id 9815 ackbij2 10195 wunom 10673 r1limwun 10689 inar1 10728 r1tskina 10735 r1rankcld 44220 |
| Copyright terms: Public domain | W3C validator |