MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onssr1 Structured version   Visualization version   GIF version

Theorem onssr1 9260
Description: Initial segments of the ordinals are contained in initial segments of the cumulative hierarchy. (Contributed by FL, 20-Apr-2011.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
onssr1 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))

Proof of Theorem onssr1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 r1funlim 9195 . . . . . . . . . 10 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 488 . . . . . . . . 9 Lim dom 𝑅1
3 limord 6250 . . . . . . . . 9 (Lim dom 𝑅1 → Ord dom 𝑅1)
4 ordtr1 6234 . . . . . . . . 9 (Ord dom 𝑅1 → ((𝑥𝐴𝐴 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1))
52, 3, 4mp2b 10 . . . . . . . 8 ((𝑥𝐴𝐴 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1)
65ancoms 461 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥 ∈ dom 𝑅1)
7 rankonidlem 9257 . . . . . . 7 (𝑥 ∈ dom 𝑅1 → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥))
86, 7syl 17 . . . . . 6 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥))
98simprd 498 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (rank‘𝑥) = 𝑥)
10 simpr 487 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥𝐴)
119, 10eqeltrd 2913 . . . 4 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (rank‘𝑥) ∈ 𝐴)
128simpld 497 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥 (𝑅1 “ On))
13 simpl 485 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝐴 ∈ dom 𝑅1)
14 rankr1ag 9231 . . . . 5 ((𝑥 (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → (𝑥 ∈ (𝑅1𝐴) ↔ (rank‘𝑥) ∈ 𝐴))
1512, 13, 14syl2anc 586 . . . 4 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (𝑥 ∈ (𝑅1𝐴) ↔ (rank‘𝑥) ∈ 𝐴))
1611, 15mpbird 259 . . 3 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥 ∈ (𝑅1𝐴))
1716ex 415 . 2 (𝐴 ∈ dom 𝑅1 → (𝑥𝐴𝑥 ∈ (𝑅1𝐴)))
1817ssrdv 3973 1 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wss 3936   cuni 4838  dom cdm 5555  cima 5558  Ord word 6190  Oncon0 6191  Lim wlim 6192  Fun wfun 6349  cfv 6355  𝑅1cr1 9191  rankcrnk 9192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-r1 9193  df-rank 9194
This theorem is referenced by:  rankr1id  9291  ackbij2  9665  wunom  10142  r1limwun  10158  inar1  10197  r1tskina  10204  r1rankcld  40587
  Copyright terms: Public domain W3C validator