![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onssr1 | Structured version Visualization version GIF version |
Description: Initial segments of the ordinals are contained in initial segments of the cumulative hierarchy. (Contributed by FL, 20-Apr-2011.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
onssr1 | β’ (π΄ β dom π 1 β π΄ β (π 1βπ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1funlim 9760 | . . . . . . . . . 10 β’ (Fun π 1 β§ Lim dom π 1) | |
2 | 1 | simpri 486 | . . . . . . . . 9 β’ Lim dom π 1 |
3 | limord 6424 | . . . . . . . . 9 β’ (Lim dom π 1 β Ord dom π 1) | |
4 | ordtr1 6407 | . . . . . . . . 9 β’ (Ord dom π 1 β ((π₯ β π΄ β§ π΄ β dom π 1) β π₯ β dom π 1)) | |
5 | 2, 3, 4 | mp2b 10 | . . . . . . . 8 β’ ((π₯ β π΄ β§ π΄ β dom π 1) β π₯ β dom π 1) |
6 | 5 | ancoms 459 | . . . . . . 7 β’ ((π΄ β dom π 1 β§ π₯ β π΄) β π₯ β dom π 1) |
7 | rankonidlem 9822 | . . . . . . 7 β’ (π₯ β dom π 1 β (π₯ β βͺ (π 1 β On) β§ (rankβπ₯) = π₯)) | |
8 | 6, 7 | syl 17 | . . . . . 6 β’ ((π΄ β dom π 1 β§ π₯ β π΄) β (π₯ β βͺ (π 1 β On) β§ (rankβπ₯) = π₯)) |
9 | 8 | simprd 496 | . . . . 5 β’ ((π΄ β dom π 1 β§ π₯ β π΄) β (rankβπ₯) = π₯) |
10 | simpr 485 | . . . . 5 β’ ((π΄ β dom π 1 β§ π₯ β π΄) β π₯ β π΄) | |
11 | 9, 10 | eqeltrd 2833 | . . . 4 β’ ((π΄ β dom π 1 β§ π₯ β π΄) β (rankβπ₯) β π΄) |
12 | 8 | simpld 495 | . . . . 5 β’ ((π΄ β dom π 1 β§ π₯ β π΄) β π₯ β βͺ (π 1 β On)) |
13 | simpl 483 | . . . . 5 β’ ((π΄ β dom π 1 β§ π₯ β π΄) β π΄ β dom π 1) | |
14 | rankr1ag 9796 | . . . . 5 β’ ((π₯ β βͺ (π 1 β On) β§ π΄ β dom π 1) β (π₯ β (π 1βπ΄) β (rankβπ₯) β π΄)) | |
15 | 12, 13, 14 | syl2anc 584 | . . . 4 β’ ((π΄ β dom π 1 β§ π₯ β π΄) β (π₯ β (π 1βπ΄) β (rankβπ₯) β π΄)) |
16 | 11, 15 | mpbird 256 | . . 3 β’ ((π΄ β dom π 1 β§ π₯ β π΄) β π₯ β (π 1βπ΄)) |
17 | 16 | ex 413 | . 2 β’ (π΄ β dom π 1 β (π₯ β π΄ β π₯ β (π 1βπ΄))) |
18 | 17 | ssrdv 3988 | 1 β’ (π΄ β dom π 1 β π΄ β (π 1βπ΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β wss 3948 βͺ cuni 4908 dom cdm 5676 β cima 5679 Ord word 6363 Oncon0 6364 Lim wlim 6365 Fun wfun 6537 βcfv 6543 π 1cr1 9756 rankcrnk 9757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-r1 9758 df-rank 9759 |
This theorem is referenced by: rankr1id 9856 ackbij2 10237 wunom 10714 r1limwun 10730 inar1 10769 r1tskina 10776 r1rankcld 42980 |
Copyright terms: Public domain | W3C validator |