MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onssr1 Structured version   Visualization version   GIF version

Theorem onssr1 9719
Description: Initial segments of the ordinals are contained in initial segments of the cumulative hierarchy. (Contributed by FL, 20-Apr-2011.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
onssr1 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))

Proof of Theorem onssr1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 r1funlim 9654 . . . . . . . . . 10 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 485 . . . . . . . . 9 Lim dom 𝑅1
3 limord 6362 . . . . . . . . 9 (Lim dom 𝑅1 → Ord dom 𝑅1)
4 ordtr1 6345 . . . . . . . . 9 (Ord dom 𝑅1 → ((𝑥𝐴𝐴 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1))
52, 3, 4mp2b 10 . . . . . . . 8 ((𝑥𝐴𝐴 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1)
65ancoms 458 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥 ∈ dom 𝑅1)
7 rankonidlem 9716 . . . . . . 7 (𝑥 ∈ dom 𝑅1 → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥))
86, 7syl 17 . . . . . 6 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥))
98simprd 495 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (rank‘𝑥) = 𝑥)
10 simpr 484 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥𝐴)
119, 10eqeltrd 2831 . . . 4 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (rank‘𝑥) ∈ 𝐴)
128simpld 494 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥 (𝑅1 “ On))
13 simpl 482 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝐴 ∈ dom 𝑅1)
14 rankr1ag 9690 . . . . 5 ((𝑥 (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → (𝑥 ∈ (𝑅1𝐴) ↔ (rank‘𝑥) ∈ 𝐴))
1512, 13, 14syl2anc 584 . . . 4 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (𝑥 ∈ (𝑅1𝐴) ↔ (rank‘𝑥) ∈ 𝐴))
1611, 15mpbird 257 . . 3 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥 ∈ (𝑅1𝐴))
1716ex 412 . 2 (𝐴 ∈ dom 𝑅1 → (𝑥𝐴𝑥 ∈ (𝑅1𝐴)))
1817ssrdv 3935 1 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wss 3897   cuni 4854  dom cdm 5611  cima 5614  Ord word 6300  Oncon0 6301  Lim wlim 6302  Fun wfun 6470  cfv 6476  𝑅1cr1 9650  rankcrnk 9651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-r1 9652  df-rank 9653
This theorem is referenced by:  rankr1id  9750  ackbij2  10128  wunom  10606  r1limwun  10622  inar1  10661  r1tskina  10668  r1rankcld  44264
  Copyright terms: Public domain W3C validator