| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onssr1 | Structured version Visualization version GIF version | ||
| Description: Initial segments of the ordinals are contained in initial segments of the cumulative hierarchy. (Contributed by FL, 20-Apr-2011.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| onssr1 | ⊢ (𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ (𝑅1‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1funlim 9681 | . . . . . . . . . 10 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 2 | 1 | simpri 485 | . . . . . . . . 9 ⊢ Lim dom 𝑅1 |
| 3 | limord 6372 | . . . . . . . . 9 ⊢ (Lim dom 𝑅1 → Ord dom 𝑅1) | |
| 4 | ordtr1 6355 | . . . . . . . . 9 ⊢ (Ord dom 𝑅1 → ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1)) | |
| 5 | 2, 3, 4 | mp2b 10 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1) |
| 6 | 5 | ancoms 458 | . . . . . . 7 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ dom 𝑅1) |
| 7 | rankonidlem 9743 | . . . . . . 7 ⊢ (𝑥 ∈ dom 𝑅1 → (𝑥 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥)) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥)) |
| 9 | 8 | simprd 495 | . . . . 5 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → (rank‘𝑥) = 𝑥) |
| 10 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 11 | 9, 10 | eqeltrd 2828 | . . . 4 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → (rank‘𝑥) ∈ 𝐴) |
| 12 | 8 | simpld 494 | . . . . 5 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ∪ (𝑅1 “ On)) |
| 13 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ dom 𝑅1) | |
| 14 | rankr1ag 9717 | . . . . 5 ⊢ ((𝑥 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → (𝑥 ∈ (𝑅1‘𝐴) ↔ (rank‘𝑥) ∈ 𝐴)) | |
| 15 | 12, 13, 14 | syl2anc 584 | . . . 4 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ (𝑅1‘𝐴) ↔ (rank‘𝑥) ∈ 𝐴)) |
| 16 | 11, 15 | mpbird 257 | . . 3 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (𝑅1‘𝐴)) |
| 17 | 16 | ex 412 | . 2 ⊢ (𝐴 ∈ dom 𝑅1 → (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝑅1‘𝐴))) |
| 18 | 17 | ssrdv 3943 | 1 ⊢ (𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ (𝑅1‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ∪ cuni 4861 dom cdm 5623 “ cima 5626 Ord word 6310 Oncon0 6311 Lim wlim 6312 Fun wfun 6480 ‘cfv 6486 𝑅1cr1 9677 rankcrnk 9678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-r1 9679 df-rank 9680 |
| This theorem is referenced by: rankr1id 9777 ackbij2 10155 wunom 10633 r1limwun 10649 inar1 10688 r1tskina 10695 r1rankcld 44224 |
| Copyright terms: Public domain | W3C validator |