| Step | Hyp | Ref
| Expression |
| 1 | | ordsson 7803 |
. . . . . 6
⊢ (Ord
𝐴 → 𝐴 ⊆ On) |
| 2 | 1 | 3ad2ant2 1135 |
. . . . 5
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐴 ⊆ On) |
| 3 | 2 | sseld 3982 |
. . . 4
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → 𝑥 ∈ On)) |
| 4 | | eleq1w 2824 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 5 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 6 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
| 7 | 5, 6 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) = 𝑥 ↔ (𝐹‘𝑦) = 𝑦)) |
| 8 | 4, 7 | imbi12d 344 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥) ↔ (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦))) |
| 9 | 8 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥)) ↔ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦)))) |
| 10 | | r19.21v 3180 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝑥 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦)) ↔ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦))) |
| 11 | | ordelss 6400 |
. . . . . . . . . . . . . . . 16
⊢ ((Ord
𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ 𝐴) |
| 12 | 11 | 3ad2antl2 1187 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ 𝐴) |
| 13 | 12 | sselda 3983 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝐴) |
| 14 | | pm5.5 361 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ 𝐴 → ((𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦) ↔ (𝐹‘𝑦) = 𝑦)) |
| 15 | 13, 14 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝑥) → ((𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦) ↔ (𝐹‘𝑦) = 𝑦)) |
| 16 | 15 | ralbidva 3176 |
. . . . . . . . . . . 12
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦) ↔ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) |
| 17 | | isof1o 7343 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴–1-1-onto→𝐵) |
| 18 | 17 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐹:𝐴–1-1-onto→𝐵) |
| 19 | 18 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝐹:𝐴–1-1-onto→𝐵) |
| 20 | | simpll3 1215 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → Ord 𝐵) |
| 21 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝑧 ∈ (𝐹‘𝑥)) |
| 22 | | f1of 6848 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| 23 | 17, 22 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴⟶𝐵) |
| 24 | 23 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐹:𝐴⟶𝐵) |
| 25 | 24 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝐹:𝐴⟶𝐵) |
| 26 | | simplrl 777 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝑥 ∈ 𝐴) |
| 27 | 25, 26 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (𝐹‘𝑥) ∈ 𝐵) |
| 28 | 21, 27 | jca 511 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (𝑧 ∈ (𝐹‘𝑥) ∧ (𝐹‘𝑥) ∈ 𝐵)) |
| 29 | | ordtr1 6427 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Ord
𝐵 → ((𝑧 ∈ (𝐹‘𝑥) ∧ (𝐹‘𝑥) ∈ 𝐵) → 𝑧 ∈ 𝐵)) |
| 30 | 20, 28, 29 | sylc 65 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝑧 ∈ 𝐵) |
| 31 | | f1ocnvfv2 7297 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑧 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑧)) = 𝑧) |
| 32 | 19, 30, 31 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (𝐹‘(◡𝐹‘𝑧)) = 𝑧) |
| 33 | 32, 21 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (𝐹‘(◡𝐹‘𝑧)) ∈ (𝐹‘𝑥)) |
| 34 | | simpll1 1213 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝐹 Isom E , E (𝐴, 𝐵)) |
| 35 | | f1ocnv 6860 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) |
| 36 | | f1of 6848 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) |
| 37 | 19, 35, 36 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → ◡𝐹:𝐵⟶𝐴) |
| 38 | 37, 30 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (◡𝐹‘𝑧) ∈ 𝐴) |
| 39 | | isorel 7346 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ ((◡𝐹‘𝑧) ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → ((◡𝐹‘𝑧) E 𝑥 ↔ (𝐹‘(◡𝐹‘𝑧)) E (𝐹‘𝑥))) |
| 40 | 34, 38, 26, 39 | syl12anc 837 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → ((◡𝐹‘𝑧) E 𝑥 ↔ (𝐹‘(◡𝐹‘𝑧)) E (𝐹‘𝑥))) |
| 41 | | epel 5587 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((◡𝐹‘𝑧) E 𝑥 ↔ (◡𝐹‘𝑧) ∈ 𝑥) |
| 42 | | fvex 6919 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹‘𝑥) ∈ V |
| 43 | 42 | epeli 5586 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹‘(◡𝐹‘𝑧)) E (𝐹‘𝑥) ↔ (𝐹‘(◡𝐹‘𝑧)) ∈ (𝐹‘𝑥)) |
| 44 | 40, 41, 43 | 3bitr3g 313 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → ((◡𝐹‘𝑧) ∈ 𝑥 ↔ (𝐹‘(◡𝐹‘𝑧)) ∈ (𝐹‘𝑥))) |
| 45 | 33, 44 | mpbird 257 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (◡𝐹‘𝑧) ∈ 𝑥) |
| 46 | | simplrr 778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦) |
| 47 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (◡𝐹‘𝑧) → (𝐹‘𝑦) = (𝐹‘(◡𝐹‘𝑧))) |
| 48 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (◡𝐹‘𝑧) → 𝑦 = (◡𝐹‘𝑧)) |
| 49 | 47, 48 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (◡𝐹‘𝑧) → ((𝐹‘𝑦) = 𝑦 ↔ (𝐹‘(◡𝐹‘𝑧)) = (◡𝐹‘𝑧))) |
| 50 | 49 | rspcv 3618 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡𝐹‘𝑧) ∈ 𝑥 → (∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦 → (𝐹‘(◡𝐹‘𝑧)) = (◡𝐹‘𝑧))) |
| 51 | 45, 46, 50 | sylc 65 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (𝐹‘(◡𝐹‘𝑧)) = (◡𝐹‘𝑧)) |
| 52 | 32, 51 | eqtr3d 2779 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝑧 = (◡𝐹‘𝑧)) |
| 53 | 52, 45 | eqeltrd 2841 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝑧 ∈ 𝑥) |
| 54 | | simprr 773 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) → ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦) |
| 55 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑧 → (𝐹‘𝑦) = (𝐹‘𝑧)) |
| 56 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑧 → 𝑦 = 𝑧) |
| 57 | 55, 56 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑧 → ((𝐹‘𝑦) = 𝑦 ↔ (𝐹‘𝑧) = 𝑧)) |
| 58 | 57 | rspccva 3621 |
. . . . . . . . . . . . . . . . 17
⊢
((∀𝑦 ∈
𝑥 (𝐹‘𝑦) = 𝑦 ∧ 𝑧 ∈ 𝑥) → (𝐹‘𝑧) = 𝑧) |
| 59 | 54, 58 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → (𝐹‘𝑧) = 𝑧) |
| 60 | | epel 5587 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 E 𝑥 ↔ 𝑧 ∈ 𝑥) |
| 61 | 60 | biimpri 228 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ 𝑥 → 𝑧 E 𝑥) |
| 62 | 61 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → 𝑧 E 𝑥) |
| 63 | | simpll1 1213 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → 𝐹 Isom E , E (𝐴, 𝐵)) |
| 64 | | simpl2 1193 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) → Ord 𝐴) |
| 65 | | simprl 771 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) → 𝑥 ∈ 𝐴) |
| 66 | 64, 65, 11 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) → 𝑥 ⊆ 𝐴) |
| 67 | 66 | sselda 3983 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ 𝐴) |
| 68 | | simplrl 777 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → 𝑥 ∈ 𝐴) |
| 69 | | isorel 7346 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → (𝑧 E 𝑥 ↔ (𝐹‘𝑧) E (𝐹‘𝑥))) |
| 70 | 63, 67, 68, 69 | syl12anc 837 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → (𝑧 E 𝑥 ↔ (𝐹‘𝑧) E (𝐹‘𝑥))) |
| 71 | 62, 70 | mpbid 232 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → (𝐹‘𝑧) E (𝐹‘𝑥)) |
| 72 | 42 | epeli 5586 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑧) E (𝐹‘𝑥) ↔ (𝐹‘𝑧) ∈ (𝐹‘𝑥)) |
| 73 | 71, 72 | sylib 218 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → (𝐹‘𝑧) ∈ (𝐹‘𝑥)) |
| 74 | 59, 73 | eqeltrrd 2842 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ (𝐹‘𝑥)) |
| 75 | 53, 74 | impbida 801 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) → (𝑧 ∈ (𝐹‘𝑥) ↔ 𝑧 ∈ 𝑥)) |
| 76 | 75 | eqrdv 2735 |
. . . . . . . . . . . . 13
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) → (𝐹‘𝑥) = 𝑥) |
| 77 | 76 | expr 456 |
. . . . . . . . . . . 12
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦 → (𝐹‘𝑥) = 𝑥)) |
| 78 | 16, 77 | sylbid 240 |
. . . . . . . . . . 11
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦) → (𝐹‘𝑥) = 𝑥)) |
| 79 | 78 | ex 412 |
. . . . . . . . . 10
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦) → (𝐹‘𝑥) = 𝑥))) |
| 80 | 79 | com23 86 |
. . . . . . . . 9
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥))) |
| 81 | 80 | a2i 14 |
. . . . . . . 8
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦)) → ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥))) |
| 82 | 81 | a1i 11 |
. . . . . . 7
⊢ (𝑥 ∈ On → (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦)) → ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥)))) |
| 83 | 10, 82 | biimtrid 242 |
. . . . . 6
⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦)) → ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥)))) |
| 84 | 9, 83 | tfis2 7878 |
. . . . 5
⊢ (𝑥 ∈ On → ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥))) |
| 85 | 84 | com3l 89 |
. . . 4
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝑥 ∈ On → (𝐹‘𝑥) = 𝑥))) |
| 86 | 3, 85 | mpdd 43 |
. . 3
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥)) |
| 87 | 86 | ralrimiv 3145 |
. 2
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) |
| 88 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
| 89 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) |
| 90 | 88, 89 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) = 𝑥 ↔ (𝐹‘𝑧) = 𝑧)) |
| 91 | 90 | rspccva 3621 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝐴 (𝐹‘𝑥) = 𝑥 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = 𝑧) |
| 92 | 91 | adantll 714 |
. . . . . 6
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = 𝑧) |
| 93 | 23 | ffvelcdmda 7104 |
. . . . . . . 8
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) |
| 94 | 93 | 3ad2antl1 1186 |
. . . . . . 7
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) |
| 95 | 94 | adantlr 715 |
. . . . . 6
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) |
| 96 | 92, 95 | eqeltrrd 2842 |
. . . . 5
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐵) |
| 97 | 96 | ex 412 |
. . . 4
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵)) |
| 98 | | simpl1 1192 |
. . . . . . . 8
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → 𝐹 Isom E , E (𝐴, 𝐵)) |
| 99 | | f1ofo 6855 |
. . . . . . . . 9
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
| 100 | | forn 6823 |
. . . . . . . . 9
⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
| 101 | 17, 99, 100 | 3syl 18 |
. . . . . . . 8
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → ran 𝐹 = 𝐵) |
| 102 | 98, 101 | syl 17 |
. . . . . . 7
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → ran 𝐹 = 𝐵) |
| 103 | 102 | eleq2d 2827 |
. . . . . 6
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑧 ∈ ran 𝐹 ↔ 𝑧 ∈ 𝐵)) |
| 104 | | f1ofn 6849 |
. . . . . . . . . 10
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) |
| 105 | 17, 104 | syl 17 |
. . . . . . . . 9
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹 Fn 𝐴) |
| 106 | 105 | 3ad2ant1 1134 |
. . . . . . . 8
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐹 Fn 𝐴) |
| 107 | 106 | adantr 480 |
. . . . . . 7
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → 𝐹 Fn 𝐴) |
| 108 | | fvelrnb 6969 |
. . . . . . 7
⊢ (𝐹 Fn 𝐴 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑤 ∈ 𝐴 (𝐹‘𝑤) = 𝑧)) |
| 109 | 107, 108 | syl 17 |
. . . . . 6
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑤 ∈ 𝐴 (𝐹‘𝑤) = 𝑧)) |
| 110 | 103, 109 | bitr3d 281 |
. . . . 5
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑧 ∈ 𝐵 ↔ ∃𝑤 ∈ 𝐴 (𝐹‘𝑤) = 𝑧)) |
| 111 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) |
| 112 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → 𝑥 = 𝑤) |
| 113 | 111, 112 | eqeq12d 2753 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥) = 𝑥 ↔ (𝐹‘𝑤) = 𝑤)) |
| 114 | 113 | rspcv 3618 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥 → (𝐹‘𝑤) = 𝑤)) |
| 115 | 114 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑤 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥 → (𝐹‘𝑤) = 𝑤))) |
| 116 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑤) = 𝑤 ∧ (𝐹‘𝑤) = 𝑧) → (𝐹‘𝑤) = 𝑧) |
| 117 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑤) = 𝑤 ∧ (𝐹‘𝑤) = 𝑧) → (𝐹‘𝑤) = 𝑤) |
| 118 | 116, 117 | eqtr3d 2779 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑤) = 𝑤 ∧ (𝐹‘𝑤) = 𝑧) → 𝑧 = 𝑤) |
| 119 | 118 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑤 ∈ 𝐴) ∧ ((𝐹‘𝑤) = 𝑤 ∧ (𝐹‘𝑤) = 𝑧)) → 𝑧 = 𝑤) |
| 120 | | simplr 769 |
. . . . . . . . . . 11
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑤 ∈ 𝐴) ∧ ((𝐹‘𝑤) = 𝑤 ∧ (𝐹‘𝑤) = 𝑧)) → 𝑤 ∈ 𝐴) |
| 121 | 119, 120 | eqeltrd 2841 |
. . . . . . . . . 10
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑤 ∈ 𝐴) ∧ ((𝐹‘𝑤) = 𝑤 ∧ (𝐹‘𝑤) = 𝑧)) → 𝑧 ∈ 𝐴) |
| 122 | 121 | exp43 436 |
. . . . . . . . 9
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑤 ∈ 𝐴 → ((𝐹‘𝑤) = 𝑤 → ((𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐴)))) |
| 123 | 115, 122 | syldd 72 |
. . . . . . . 8
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑤 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥 → ((𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐴)))) |
| 124 | 123 | com23 86 |
. . . . . . 7
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥 → (𝑤 ∈ 𝐴 → ((𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐴)))) |
| 125 | 124 | imp 406 |
. . . . . 6
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑤 ∈ 𝐴 → ((𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐴))) |
| 126 | 125 | rexlimdv 3153 |
. . . . 5
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (∃𝑤 ∈ 𝐴 (𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐴)) |
| 127 | 110, 126 | sylbid 240 |
. . . 4
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑧 ∈ 𝐵 → 𝑧 ∈ 𝐴)) |
| 128 | 97, 127 | impbid 212 |
. . 3
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵)) |
| 129 | 128 | eqrdv 2735 |
. 2
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → 𝐴 = 𝐵) |
| 130 | 87, 129 | mpdan 687 |
1
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐴 = 𝐵) |