Step | Hyp | Ref
| Expression |
1 | | ordsson 7610 |
. . . . . 6
⊢ (Ord
𝐴 → 𝐴 ⊆ On) |
2 | 1 | 3ad2ant2 1132 |
. . . . 5
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐴 ⊆ On) |
3 | 2 | sseld 3916 |
. . . 4
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → 𝑥 ∈ On)) |
4 | | eleq1w 2821 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
5 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
6 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
7 | 5, 6 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) = 𝑥 ↔ (𝐹‘𝑦) = 𝑦)) |
8 | 4, 7 | imbi12d 344 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥) ↔ (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦))) |
9 | 8 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥)) ↔ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦)))) |
10 | | r19.21v 3100 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝑥 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦)) ↔ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦))) |
11 | | ordelss 6267 |
. . . . . . . . . . . . . . . 16
⊢ ((Ord
𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ 𝐴) |
12 | 11 | 3ad2antl2 1184 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ 𝐴) |
13 | 12 | sselda 3917 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝐴) |
14 | | pm5.5 361 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ 𝐴 → ((𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦) ↔ (𝐹‘𝑦) = 𝑦)) |
15 | 13, 14 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝑥) → ((𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦) ↔ (𝐹‘𝑦) = 𝑦)) |
16 | 15 | ralbidva 3119 |
. . . . . . . . . . . 12
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦) ↔ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) |
17 | | isof1o 7174 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴–1-1-onto→𝐵) |
18 | 17 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐹:𝐴–1-1-onto→𝐵) |
19 | 18 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝐹:𝐴–1-1-onto→𝐵) |
20 | | simpll3 1212 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → Ord 𝐵) |
21 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝑧 ∈ (𝐹‘𝑥)) |
22 | | f1of 6700 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) |
23 | 17, 22 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴⟶𝐵) |
24 | 23 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐹:𝐴⟶𝐵) |
25 | 24 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝐹:𝐴⟶𝐵) |
26 | | simplrl 773 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝑥 ∈ 𝐴) |
27 | 25, 26 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (𝐹‘𝑥) ∈ 𝐵) |
28 | 21, 27 | jca 511 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (𝑧 ∈ (𝐹‘𝑥) ∧ (𝐹‘𝑥) ∈ 𝐵)) |
29 | | ordtr1 6294 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Ord
𝐵 → ((𝑧 ∈ (𝐹‘𝑥) ∧ (𝐹‘𝑥) ∈ 𝐵) → 𝑧 ∈ 𝐵)) |
30 | 20, 28, 29 | sylc 65 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝑧 ∈ 𝐵) |
31 | | f1ocnvfv2 7130 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑧 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑧)) = 𝑧) |
32 | 19, 30, 31 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (𝐹‘(◡𝐹‘𝑧)) = 𝑧) |
33 | 32, 21 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (𝐹‘(◡𝐹‘𝑧)) ∈ (𝐹‘𝑥)) |
34 | | simpll1 1210 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝐹 Isom E , E (𝐴, 𝐵)) |
35 | | f1ocnv 6712 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) |
36 | | f1of 6700 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) |
37 | 19, 35, 36 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → ◡𝐹:𝐵⟶𝐴) |
38 | 37, 30 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (◡𝐹‘𝑧) ∈ 𝐴) |
39 | | isorel 7177 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ ((◡𝐹‘𝑧) ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → ((◡𝐹‘𝑧) E 𝑥 ↔ (𝐹‘(◡𝐹‘𝑧)) E (𝐹‘𝑥))) |
40 | 34, 38, 26, 39 | syl12anc 833 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → ((◡𝐹‘𝑧) E 𝑥 ↔ (𝐹‘(◡𝐹‘𝑧)) E (𝐹‘𝑥))) |
41 | | epel 5489 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((◡𝐹‘𝑧) E 𝑥 ↔ (◡𝐹‘𝑧) ∈ 𝑥) |
42 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹‘𝑥) ∈ V |
43 | 42 | epeli 5488 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹‘(◡𝐹‘𝑧)) E (𝐹‘𝑥) ↔ (𝐹‘(◡𝐹‘𝑧)) ∈ (𝐹‘𝑥)) |
44 | 40, 41, 43 | 3bitr3g 312 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → ((◡𝐹‘𝑧) ∈ 𝑥 ↔ (𝐹‘(◡𝐹‘𝑧)) ∈ (𝐹‘𝑥))) |
45 | 33, 44 | mpbird 256 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (◡𝐹‘𝑧) ∈ 𝑥) |
46 | | simplrr 774 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦) |
47 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (◡𝐹‘𝑧) → (𝐹‘𝑦) = (𝐹‘(◡𝐹‘𝑧))) |
48 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (◡𝐹‘𝑧) → 𝑦 = (◡𝐹‘𝑧)) |
49 | 47, 48 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (◡𝐹‘𝑧) → ((𝐹‘𝑦) = 𝑦 ↔ (𝐹‘(◡𝐹‘𝑧)) = (◡𝐹‘𝑧))) |
50 | 49 | rspcv 3547 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡𝐹‘𝑧) ∈ 𝑥 → (∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦 → (𝐹‘(◡𝐹‘𝑧)) = (◡𝐹‘𝑧))) |
51 | 45, 46, 50 | sylc 65 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (𝐹‘(◡𝐹‘𝑧)) = (◡𝐹‘𝑧)) |
52 | 32, 51 | eqtr3d 2780 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝑧 = (◡𝐹‘𝑧)) |
53 | 52, 45 | eqeltrd 2839 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝑧 ∈ 𝑥) |
54 | | simprr 769 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) → ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦) |
55 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑧 → (𝐹‘𝑦) = (𝐹‘𝑧)) |
56 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑧 → 𝑦 = 𝑧) |
57 | 55, 56 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑧 → ((𝐹‘𝑦) = 𝑦 ↔ (𝐹‘𝑧) = 𝑧)) |
58 | 57 | rspccva 3551 |
. . . . . . . . . . . . . . . . 17
⊢
((∀𝑦 ∈
𝑥 (𝐹‘𝑦) = 𝑦 ∧ 𝑧 ∈ 𝑥) → (𝐹‘𝑧) = 𝑧) |
59 | 54, 58 | sylan 579 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → (𝐹‘𝑧) = 𝑧) |
60 | | epel 5489 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 E 𝑥 ↔ 𝑧 ∈ 𝑥) |
61 | 60 | biimpri 227 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ 𝑥 → 𝑧 E 𝑥) |
62 | 61 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → 𝑧 E 𝑥) |
63 | | simpll1 1210 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → 𝐹 Isom E , E (𝐴, 𝐵)) |
64 | | simpl2 1190 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) → Ord 𝐴) |
65 | | simprl 767 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) → 𝑥 ∈ 𝐴) |
66 | 64, 65, 11 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) → 𝑥 ⊆ 𝐴) |
67 | 66 | sselda 3917 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ 𝐴) |
68 | | simplrl 773 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → 𝑥 ∈ 𝐴) |
69 | | isorel 7177 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → (𝑧 E 𝑥 ↔ (𝐹‘𝑧) E (𝐹‘𝑥))) |
70 | 63, 67, 68, 69 | syl12anc 833 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → (𝑧 E 𝑥 ↔ (𝐹‘𝑧) E (𝐹‘𝑥))) |
71 | 62, 70 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → (𝐹‘𝑧) E (𝐹‘𝑥)) |
72 | 42 | epeli 5488 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑧) E (𝐹‘𝑥) ↔ (𝐹‘𝑧) ∈ (𝐹‘𝑥)) |
73 | 71, 72 | sylib 217 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → (𝐹‘𝑧) ∈ (𝐹‘𝑥)) |
74 | 59, 73 | eqeltrrd 2840 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ (𝐹‘𝑥)) |
75 | 53, 74 | impbida 797 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) → (𝑧 ∈ (𝐹‘𝑥) ↔ 𝑧 ∈ 𝑥)) |
76 | 75 | eqrdv 2736 |
. . . . . . . . . . . . 13
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) → (𝐹‘𝑥) = 𝑥) |
77 | 76 | expr 456 |
. . . . . . . . . . . 12
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦 → (𝐹‘𝑥) = 𝑥)) |
78 | 16, 77 | sylbid 239 |
. . . . . . . . . . 11
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦) → (𝐹‘𝑥) = 𝑥)) |
79 | 78 | ex 412 |
. . . . . . . . . 10
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦) → (𝐹‘𝑥) = 𝑥))) |
80 | 79 | com23 86 |
. . . . . . . . 9
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥))) |
81 | 80 | a2i 14 |
. . . . . . . 8
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦)) → ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥))) |
82 | 81 | a1i 11 |
. . . . . . 7
⊢ (𝑥 ∈ On → (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦)) → ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥)))) |
83 | 10, 82 | syl5bi 241 |
. . . . . 6
⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦)) → ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥)))) |
84 | 9, 83 | tfis2 7678 |
. . . . 5
⊢ (𝑥 ∈ On → ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥))) |
85 | 84 | com3l 89 |
. . . 4
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝑥 ∈ On → (𝐹‘𝑥) = 𝑥))) |
86 | 3, 85 | mpdd 43 |
. . 3
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥)) |
87 | 86 | ralrimiv 3106 |
. 2
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) |
88 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
89 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) |
90 | 88, 89 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) = 𝑥 ↔ (𝐹‘𝑧) = 𝑧)) |
91 | 90 | rspccva 3551 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝐴 (𝐹‘𝑥) = 𝑥 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = 𝑧) |
92 | 91 | adantll 710 |
. . . . . 6
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = 𝑧) |
93 | 23 | ffvelrnda 6943 |
. . . . . . . 8
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) |
94 | 93 | 3ad2antl1 1183 |
. . . . . . 7
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) |
95 | 94 | adantlr 711 |
. . . . . 6
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) |
96 | 92, 95 | eqeltrrd 2840 |
. . . . 5
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐵) |
97 | 96 | ex 412 |
. . . 4
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵)) |
98 | | simpl1 1189 |
. . . . . . . 8
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → 𝐹 Isom E , E (𝐴, 𝐵)) |
99 | | f1ofo 6707 |
. . . . . . . . 9
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
100 | | forn 6675 |
. . . . . . . . 9
⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
101 | 17, 99, 100 | 3syl 18 |
. . . . . . . 8
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → ran 𝐹 = 𝐵) |
102 | 98, 101 | syl 17 |
. . . . . . 7
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → ran 𝐹 = 𝐵) |
103 | 102 | eleq2d 2824 |
. . . . . 6
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑧 ∈ ran 𝐹 ↔ 𝑧 ∈ 𝐵)) |
104 | | f1ofn 6701 |
. . . . . . . . . 10
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) |
105 | 17, 104 | syl 17 |
. . . . . . . . 9
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹 Fn 𝐴) |
106 | 105 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐹 Fn 𝐴) |
107 | 106 | adantr 480 |
. . . . . . 7
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → 𝐹 Fn 𝐴) |
108 | | fvelrnb 6812 |
. . . . . . 7
⊢ (𝐹 Fn 𝐴 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑤 ∈ 𝐴 (𝐹‘𝑤) = 𝑧)) |
109 | 107, 108 | syl 17 |
. . . . . 6
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑤 ∈ 𝐴 (𝐹‘𝑤) = 𝑧)) |
110 | 103, 109 | bitr3d 280 |
. . . . 5
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑧 ∈ 𝐵 ↔ ∃𝑤 ∈ 𝐴 (𝐹‘𝑤) = 𝑧)) |
111 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) |
112 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → 𝑥 = 𝑤) |
113 | 111, 112 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥) = 𝑥 ↔ (𝐹‘𝑤) = 𝑤)) |
114 | 113 | rspcv 3547 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥 → (𝐹‘𝑤) = 𝑤)) |
115 | 114 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑤 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥 → (𝐹‘𝑤) = 𝑤))) |
116 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑤) = 𝑤 ∧ (𝐹‘𝑤) = 𝑧) → (𝐹‘𝑤) = 𝑧) |
117 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑤) = 𝑤 ∧ (𝐹‘𝑤) = 𝑧) → (𝐹‘𝑤) = 𝑤) |
118 | 116, 117 | eqtr3d 2780 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑤) = 𝑤 ∧ (𝐹‘𝑤) = 𝑧) → 𝑧 = 𝑤) |
119 | 118 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑤 ∈ 𝐴) ∧ ((𝐹‘𝑤) = 𝑤 ∧ (𝐹‘𝑤) = 𝑧)) → 𝑧 = 𝑤) |
120 | | simplr 765 |
. . . . . . . . . . 11
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑤 ∈ 𝐴) ∧ ((𝐹‘𝑤) = 𝑤 ∧ (𝐹‘𝑤) = 𝑧)) → 𝑤 ∈ 𝐴) |
121 | 119, 120 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑤 ∈ 𝐴) ∧ ((𝐹‘𝑤) = 𝑤 ∧ (𝐹‘𝑤) = 𝑧)) → 𝑧 ∈ 𝐴) |
122 | 121 | exp43 436 |
. . . . . . . . 9
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑤 ∈ 𝐴 → ((𝐹‘𝑤) = 𝑤 → ((𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐴)))) |
123 | 115, 122 | syldd 72 |
. . . . . . . 8
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑤 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥 → ((𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐴)))) |
124 | 123 | com23 86 |
. . . . . . 7
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥 → (𝑤 ∈ 𝐴 → ((𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐴)))) |
125 | 124 | imp 406 |
. . . . . 6
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑤 ∈ 𝐴 → ((𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐴))) |
126 | 125 | rexlimdv 3211 |
. . . . 5
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (∃𝑤 ∈ 𝐴 (𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐴)) |
127 | 110, 126 | sylbid 239 |
. . . 4
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑧 ∈ 𝐵 → 𝑧 ∈ 𝐴)) |
128 | 97, 127 | impbid 211 |
. . 3
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵)) |
129 | 128 | eqrdv 2736 |
. 2
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → 𝐴 = 𝐵) |
130 | 87, 129 | mpdan 683 |
1
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐴 = 𝐵) |