MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankonidlem Structured version   Visualization version   GIF version

Theorem rankonidlem 9251
Description: Lemma for rankonid 9252. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 22-Mar-2013.)
Assertion
Ref Expression
rankonidlem (𝐴 ∈ dom 𝑅1 → (𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = 𝐴))

Proof of Theorem rankonidlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1funlim 9189 . . . . 5 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 488 . . . 4 Lim dom 𝑅1
3 limord 6244 . . . 4 (Lim dom 𝑅1 → Ord dom 𝑅1)
42, 3ax-mp 5 . . 3 Ord dom 𝑅1
5 ordelon 6209 . . 3 ((Ord dom 𝑅1𝐴 ∈ dom 𝑅1) → 𝐴 ∈ On)
64, 5mpan 688 . 2 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
7 eleq1 2900 . . . 4 (𝑥 = 𝑦 → (𝑥 ∈ dom 𝑅1𝑦 ∈ dom 𝑅1))
8 eleq1 2900 . . . . 5 (𝑥 = 𝑦 → (𝑥 (𝑅1 “ On) ↔ 𝑦 (𝑅1 “ On)))
9 fveq2 6664 . . . . . 6 (𝑥 = 𝑦 → (rank‘𝑥) = (rank‘𝑦))
10 id 22 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
119, 10eqeq12d 2837 . . . . 5 (𝑥 = 𝑦 → ((rank‘𝑥) = 𝑥 ↔ (rank‘𝑦) = 𝑦))
128, 11anbi12d 632 . . . 4 (𝑥 = 𝑦 → ((𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥) ↔ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)))
137, 12imbi12d 347 . . 3 (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝑅1 → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥)) ↔ (𝑦 ∈ dom 𝑅1 → (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦))))
14 eleq1 2900 . . . 4 (𝑥 = 𝐴 → (𝑥 ∈ dom 𝑅1𝐴 ∈ dom 𝑅1))
15 eleq1 2900 . . . . 5 (𝑥 = 𝐴 → (𝑥 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On)))
16 fveq2 6664 . . . . . 6 (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴))
17 id 22 . . . . . 6 (𝑥 = 𝐴𝑥 = 𝐴)
1816, 17eqeq12d 2837 . . . . 5 (𝑥 = 𝐴 → ((rank‘𝑥) = 𝑥 ↔ (rank‘𝐴) = 𝐴))
1915, 18anbi12d 632 . . . 4 (𝑥 = 𝐴 → ((𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥) ↔ (𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = 𝐴)))
2014, 19imbi12d 347 . . 3 (𝑥 = 𝐴 → ((𝑥 ∈ dom 𝑅1 → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥)) ↔ (𝐴 ∈ dom 𝑅1 → (𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = 𝐴))))
21 ordtr1 6228 . . . . . . . . . 10 (Ord dom 𝑅1 → ((𝑦𝑥𝑥 ∈ dom 𝑅1) → 𝑦 ∈ dom 𝑅1))
224, 21ax-mp 5 . . . . . . . . 9 ((𝑦𝑥𝑥 ∈ dom 𝑅1) → 𝑦 ∈ dom 𝑅1)
2322ancoms 461 . . . . . . . 8 ((𝑥 ∈ dom 𝑅1𝑦𝑥) → 𝑦 ∈ dom 𝑅1)
24 pm5.5 364 . . . . . . . 8 (𝑦 ∈ dom 𝑅1 → ((𝑦 ∈ dom 𝑅1 → (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) ↔ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)))
2523, 24syl 17 . . . . . . 7 ((𝑥 ∈ dom 𝑅1𝑦𝑥) → ((𝑦 ∈ dom 𝑅1 → (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) ↔ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)))
2625ralbidva 3196 . . . . . 6 (𝑥 ∈ dom 𝑅1 → (∀𝑦𝑥 (𝑦 ∈ dom 𝑅1 → (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) ↔ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)))
27 simplr 767 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑦𝑥)
28 ordelon 6209 . . . . . . . . . . . . . . . . . . . . . 22 ((Ord dom 𝑅1𝑥 ∈ dom 𝑅1) → 𝑥 ∈ On)
294, 28mpan 688 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ dom 𝑅1𝑥 ∈ On)
3029ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑥 ∈ On)
31 eloni 6195 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → Ord 𝑥)
3230, 31syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → Ord 𝑥)
33 ordelsuc 7529 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝑥 ∧ Ord 𝑥) → (𝑦𝑥 ↔ suc 𝑦𝑥))
3427, 32, 33syl2anc 586 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (𝑦𝑥 ↔ suc 𝑦𝑥))
3527, 34mpbid 234 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → suc 𝑦𝑥)
3623adantr 483 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑦 ∈ dom 𝑅1)
37 limsuc 7558 . . . . . . . . . . . . . . . . . . . 20 (Lim dom 𝑅1 → (𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1))
382, 37ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1)
3936, 38sylib 220 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → suc 𝑦 ∈ dom 𝑅1)
40 simpll 765 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑥 ∈ dom 𝑅1)
41 r1ord3g 9202 . . . . . . . . . . . . . . . . . 18 ((suc 𝑦 ∈ dom 𝑅1𝑥 ∈ dom 𝑅1) → (suc 𝑦𝑥 → (𝑅1‘suc 𝑦) ⊆ (𝑅1𝑥)))
4239, 40, 41syl2anc 586 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (suc 𝑦𝑥 → (𝑅1‘suc 𝑦) ⊆ (𝑅1𝑥)))
4335, 42mpd 15 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (𝑅1‘suc 𝑦) ⊆ (𝑅1𝑥))
44 rankidb 9223 . . . . . . . . . . . . . . . . . 18 (𝑦 (𝑅1 “ On) → 𝑦 ∈ (𝑅1‘suc (rank‘𝑦)))
4544ad2antrl 726 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑦 ∈ (𝑅1‘suc (rank‘𝑦)))
46 suceq 6250 . . . . . . . . . . . . . . . . . . 19 ((rank‘𝑦) = 𝑦 → suc (rank‘𝑦) = suc 𝑦)
4746ad2antll 727 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → suc (rank‘𝑦) = suc 𝑦)
4847fveq2d 6668 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (𝑅1‘suc (rank‘𝑦)) = (𝑅1‘suc 𝑦))
4945, 48eleqtrd 2915 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑦 ∈ (𝑅1‘suc 𝑦))
5043, 49sseldd 3967 . . . . . . . . . . . . . . 15 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑦 ∈ (𝑅1𝑥))
5150ex 415 . . . . . . . . . . . . . 14 ((𝑥 ∈ dom 𝑅1𝑦𝑥) → ((𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → 𝑦 ∈ (𝑅1𝑥)))
5251ralimdva 3177 . . . . . . . . . . . . 13 (𝑥 ∈ dom 𝑅1 → (∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → ∀𝑦𝑥 𝑦 ∈ (𝑅1𝑥)))
5352imp 409 . . . . . . . . . . . 12 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → ∀𝑦𝑥 𝑦 ∈ (𝑅1𝑥))
54 dfss3 3955 . . . . . . . . . . . 12 (𝑥 ⊆ (𝑅1𝑥) ↔ ∀𝑦𝑥 𝑦 ∈ (𝑅1𝑥))
5553, 54sylibr 236 . . . . . . . . . . 11 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑥 ⊆ (𝑅1𝑥))
56 vex 3497 . . . . . . . . . . . 12 𝑥 ∈ V
5756elpw 4545 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 (𝑅1𝑥) ↔ 𝑥 ⊆ (𝑅1𝑥))
5855, 57sylibr 236 . . . . . . . . . 10 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑥 ∈ 𝒫 (𝑅1𝑥))
59 r1sucg 9192 . . . . . . . . . . 11 (𝑥 ∈ dom 𝑅1 → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
6059adantr 483 . . . . . . . . . 10 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
6158, 60eleqtrrd 2916 . . . . . . . . 9 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑥 ∈ (𝑅1‘suc 𝑥))
62 r1elwf 9219 . . . . . . . . 9 (𝑥 ∈ (𝑅1‘suc 𝑥) → 𝑥 (𝑅1 “ On))
6361, 62syl 17 . . . . . . . 8 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑥 (𝑅1 “ On))
64 rankval3b 9249 . . . . . . . . . 10 (𝑥 (𝑅1 “ On) → (rank‘𝑥) = {𝑧 ∈ On ∣ ∀𝑦𝑥 (rank‘𝑦) ∈ 𝑧})
6563, 64syl 17 . . . . . . . . 9 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (rank‘𝑥) = {𝑧 ∈ On ∣ ∀𝑦𝑥 (rank‘𝑦) ∈ 𝑧})
66 eleq1 2900 . . . . . . . . . . . . . . . 16 ((rank‘𝑦) = 𝑦 → ((rank‘𝑦) ∈ 𝑧𝑦𝑧))
6766adantl 484 . . . . . . . . . . . . . . 15 ((𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → ((rank‘𝑦) ∈ 𝑧𝑦𝑧))
6867ralimi 3160 . . . . . . . . . . . . . 14 (∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → ∀𝑦𝑥 ((rank‘𝑦) ∈ 𝑧𝑦𝑧))
69 ralbi 3167 . . . . . . . . . . . . . 14 (∀𝑦𝑥 ((rank‘𝑦) ∈ 𝑧𝑦𝑧) → (∀𝑦𝑥 (rank‘𝑦) ∈ 𝑧 ↔ ∀𝑦𝑥 𝑦𝑧))
7068, 69syl 17 . . . . . . . . . . . . 13 (∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → (∀𝑦𝑥 (rank‘𝑦) ∈ 𝑧 ↔ ∀𝑦𝑥 𝑦𝑧))
71 dfss3 3955 . . . . . . . . . . . . 13 (𝑥𝑧 ↔ ∀𝑦𝑥 𝑦𝑧)
7270, 71syl6bbr 291 . . . . . . . . . . . 12 (∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → (∀𝑦𝑥 (rank‘𝑦) ∈ 𝑧𝑥𝑧))
7372rabbidv 3480 . . . . . . . . . . 11 (∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → {𝑧 ∈ On ∣ ∀𝑦𝑥 (rank‘𝑦) ∈ 𝑧} = {𝑧 ∈ On ∣ 𝑥𝑧})
7473inteqd 4873 . . . . . . . . . 10 (∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → {𝑧 ∈ On ∣ ∀𝑦𝑥 (rank‘𝑦) ∈ 𝑧} = {𝑧 ∈ On ∣ 𝑥𝑧})
7574adantl 484 . . . . . . . . 9 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → {𝑧 ∈ On ∣ ∀𝑦𝑥 (rank‘𝑦) ∈ 𝑧} = {𝑧 ∈ On ∣ 𝑥𝑧})
7629adantr 483 . . . . . . . . . 10 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑥 ∈ On)
77 intmin 4888 . . . . . . . . . 10 (𝑥 ∈ On → {𝑧 ∈ On ∣ 𝑥𝑧} = 𝑥)
7876, 77syl 17 . . . . . . . . 9 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → {𝑧 ∈ On ∣ 𝑥𝑧} = 𝑥)
7965, 75, 783eqtrd 2860 . . . . . . . 8 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (rank‘𝑥) = 𝑥)
8063, 79jca 514 . . . . . . 7 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥))
8180ex 415 . . . . . 6 (𝑥 ∈ dom 𝑅1 → (∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥)))
8226, 81sylbid 242 . . . . 5 (𝑥 ∈ dom 𝑅1 → (∀𝑦𝑥 (𝑦 ∈ dom 𝑅1 → (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥)))
8382com12 32 . . . 4 (∀𝑦𝑥 (𝑦 ∈ dom 𝑅1 → (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (𝑥 ∈ dom 𝑅1 → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥)))
8483a1i 11 . . 3 (𝑥 ∈ On → (∀𝑦𝑥 (𝑦 ∈ dom 𝑅1 → (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (𝑥 ∈ dom 𝑅1 → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥))))
8513, 20, 84tfis3 7566 . 2 (𝐴 ∈ On → (𝐴 ∈ dom 𝑅1 → (𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = 𝐴)))
866, 85mpcom 38 1 (𝐴 ∈ dom 𝑅1 → (𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  {crab 3142  wss 3935  𝒫 cpw 4538   cuni 4831   cint 4868  dom cdm 5549  cima 5552  Ord word 6184  Oncon0 6185  Lim wlim 6186  suc csuc 6187  Fun wfun 6343  cfv 6349  𝑅1cr1 9185  rankcrnk 9186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-r1 9187  df-rank 9188
This theorem is referenced by:  rankonid  9252  onwf  9253  onssr1  9254
  Copyright terms: Public domain W3C validator