MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankonidlem Structured version   Visualization version   GIF version

Theorem rankonidlem 9826
Description: Lemma for rankonid 9827. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 22-Mar-2013.)
Assertion
Ref Expression
rankonidlem (𝐴 ∈ dom 𝑅1 β†’ (𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π΄) = 𝐴))

Proof of Theorem rankonidlem
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1funlim 9764 . . . . 5 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 485 . . . 4 Lim dom 𝑅1
3 limord 6425 . . . 4 (Lim dom 𝑅1 β†’ Ord dom 𝑅1)
42, 3ax-mp 5 . . 3 Ord dom 𝑅1
5 ordelon 6389 . . 3 ((Ord dom 𝑅1 ∧ 𝐴 ∈ dom 𝑅1) β†’ 𝐴 ∈ On)
64, 5mpan 687 . 2 (𝐴 ∈ dom 𝑅1 β†’ 𝐴 ∈ On)
7 eleq1 2820 . . . 4 (π‘₯ = 𝑦 β†’ (π‘₯ ∈ dom 𝑅1 ↔ 𝑦 ∈ dom 𝑅1))
8 eleq1 2820 . . . . 5 (π‘₯ = 𝑦 β†’ (π‘₯ ∈ βˆͺ (𝑅1 β€œ On) ↔ 𝑦 ∈ βˆͺ (𝑅1 β€œ On)))
9 fveq2 6892 . . . . . 6 (π‘₯ = 𝑦 β†’ (rankβ€˜π‘₯) = (rankβ€˜π‘¦))
10 id 22 . . . . . 6 (π‘₯ = 𝑦 β†’ π‘₯ = 𝑦)
119, 10eqeq12d 2747 . . . . 5 (π‘₯ = 𝑦 β†’ ((rankβ€˜π‘₯) = π‘₯ ↔ (rankβ€˜π‘¦) = 𝑦))
128, 11anbi12d 630 . . . 4 (π‘₯ = 𝑦 β†’ ((π‘₯ ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘₯) = π‘₯) ↔ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)))
137, 12imbi12d 343 . . 3 (π‘₯ = 𝑦 β†’ ((π‘₯ ∈ dom 𝑅1 β†’ (π‘₯ ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘₯) = π‘₯)) ↔ (𝑦 ∈ dom 𝑅1 β†’ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦))))
14 eleq1 2820 . . . 4 (π‘₯ = 𝐴 β†’ (π‘₯ ∈ dom 𝑅1 ↔ 𝐴 ∈ dom 𝑅1))
15 eleq1 2820 . . . . 5 (π‘₯ = 𝐴 β†’ (π‘₯ ∈ βˆͺ (𝑅1 β€œ On) ↔ 𝐴 ∈ βˆͺ (𝑅1 β€œ On)))
16 fveq2 6892 . . . . . 6 (π‘₯ = 𝐴 β†’ (rankβ€˜π‘₯) = (rankβ€˜π΄))
17 id 22 . . . . . 6 (π‘₯ = 𝐴 β†’ π‘₯ = 𝐴)
1816, 17eqeq12d 2747 . . . . 5 (π‘₯ = 𝐴 β†’ ((rankβ€˜π‘₯) = π‘₯ ↔ (rankβ€˜π΄) = 𝐴))
1915, 18anbi12d 630 . . . 4 (π‘₯ = 𝐴 β†’ ((π‘₯ ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘₯) = π‘₯) ↔ (𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π΄) = 𝐴)))
2014, 19imbi12d 343 . . 3 (π‘₯ = 𝐴 β†’ ((π‘₯ ∈ dom 𝑅1 β†’ (π‘₯ ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘₯) = π‘₯)) ↔ (𝐴 ∈ dom 𝑅1 β†’ (𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π΄) = 𝐴))))
21 ordtr1 6408 . . . . . . . . . 10 (Ord dom 𝑅1 β†’ ((𝑦 ∈ π‘₯ ∧ π‘₯ ∈ dom 𝑅1) β†’ 𝑦 ∈ dom 𝑅1))
224, 21ax-mp 5 . . . . . . . . 9 ((𝑦 ∈ π‘₯ ∧ π‘₯ ∈ dom 𝑅1) β†’ 𝑦 ∈ dom 𝑅1)
2322ancoms 458 . . . . . . . 8 ((π‘₯ ∈ dom 𝑅1 ∧ 𝑦 ∈ π‘₯) β†’ 𝑦 ∈ dom 𝑅1)
24 pm5.5 360 . . . . . . . 8 (𝑦 ∈ dom 𝑅1 β†’ ((𝑦 ∈ dom 𝑅1 β†’ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) ↔ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)))
2523, 24syl 17 . . . . . . 7 ((π‘₯ ∈ dom 𝑅1 ∧ 𝑦 ∈ π‘₯) β†’ ((𝑦 ∈ dom 𝑅1 β†’ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) ↔ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)))
2625ralbidva 3174 . . . . . 6 (π‘₯ ∈ dom 𝑅1 β†’ (βˆ€π‘¦ ∈ π‘₯ (𝑦 ∈ dom 𝑅1 β†’ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) ↔ βˆ€π‘¦ ∈ π‘₯ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)))
27 simplr 766 . . . . . . . . . . . . . . . . . 18 (((π‘₯ ∈ dom 𝑅1 ∧ 𝑦 ∈ π‘₯) ∧ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ 𝑦 ∈ π‘₯)
28 ordelon 6389 . . . . . . . . . . . . . . . . . . . . . 22 ((Ord dom 𝑅1 ∧ π‘₯ ∈ dom 𝑅1) β†’ π‘₯ ∈ On)
294, 28mpan 687 . . . . . . . . . . . . . . . . . . . . 21 (π‘₯ ∈ dom 𝑅1 β†’ π‘₯ ∈ On)
3029ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 (((π‘₯ ∈ dom 𝑅1 ∧ 𝑦 ∈ π‘₯) ∧ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ π‘₯ ∈ On)
31 eloni 6375 . . . . . . . . . . . . . . . . . . . 20 (π‘₯ ∈ On β†’ Ord π‘₯)
3230, 31syl 17 . . . . . . . . . . . . . . . . . . 19 (((π‘₯ ∈ dom 𝑅1 ∧ 𝑦 ∈ π‘₯) ∧ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ Ord π‘₯)
33 ordelsuc 7811 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ π‘₯ ∧ Ord π‘₯) β†’ (𝑦 ∈ π‘₯ ↔ suc 𝑦 βŠ† π‘₯))
3427, 32, 33syl2anc 583 . . . . . . . . . . . . . . . . . 18 (((π‘₯ ∈ dom 𝑅1 ∧ 𝑦 ∈ π‘₯) ∧ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ (𝑦 ∈ π‘₯ ↔ suc 𝑦 βŠ† π‘₯))
3527, 34mpbid 231 . . . . . . . . . . . . . . . . 17 (((π‘₯ ∈ dom 𝑅1 ∧ 𝑦 ∈ π‘₯) ∧ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ suc 𝑦 βŠ† π‘₯)
3623adantr 480 . . . . . . . . . . . . . . . . . . 19 (((π‘₯ ∈ dom 𝑅1 ∧ 𝑦 ∈ π‘₯) ∧ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ 𝑦 ∈ dom 𝑅1)
37 limsuc 7841 . . . . . . . . . . . . . . . . . . . 20 (Lim dom 𝑅1 β†’ (𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1))
382, 37ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1)
3936, 38sylib 217 . . . . . . . . . . . . . . . . . 18 (((π‘₯ ∈ dom 𝑅1 ∧ 𝑦 ∈ π‘₯) ∧ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ suc 𝑦 ∈ dom 𝑅1)
40 simpll 764 . . . . . . . . . . . . . . . . . 18 (((π‘₯ ∈ dom 𝑅1 ∧ 𝑦 ∈ π‘₯) ∧ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ π‘₯ ∈ dom 𝑅1)
41 r1ord3g 9777 . . . . . . . . . . . . . . . . . 18 ((suc 𝑦 ∈ dom 𝑅1 ∧ π‘₯ ∈ dom 𝑅1) β†’ (suc 𝑦 βŠ† π‘₯ β†’ (𝑅1β€˜suc 𝑦) βŠ† (𝑅1β€˜π‘₯)))
4239, 40, 41syl2anc 583 . . . . . . . . . . . . . . . . 17 (((π‘₯ ∈ dom 𝑅1 ∧ 𝑦 ∈ π‘₯) ∧ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ (suc 𝑦 βŠ† π‘₯ β†’ (𝑅1β€˜suc 𝑦) βŠ† (𝑅1β€˜π‘₯)))
4335, 42mpd 15 . . . . . . . . . . . . . . . 16 (((π‘₯ ∈ dom 𝑅1 ∧ 𝑦 ∈ π‘₯) ∧ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ (𝑅1β€˜suc 𝑦) βŠ† (𝑅1β€˜π‘₯))
44 rankidb 9798 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ βˆͺ (𝑅1 β€œ On) β†’ 𝑦 ∈ (𝑅1β€˜suc (rankβ€˜π‘¦)))
4544ad2antrl 725 . . . . . . . . . . . . . . . . 17 (((π‘₯ ∈ dom 𝑅1 ∧ 𝑦 ∈ π‘₯) ∧ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ 𝑦 ∈ (𝑅1β€˜suc (rankβ€˜π‘¦)))
46 suceq 6431 . . . . . . . . . . . . . . . . . . 19 ((rankβ€˜π‘¦) = 𝑦 β†’ suc (rankβ€˜π‘¦) = suc 𝑦)
4746ad2antll 726 . . . . . . . . . . . . . . . . . 18 (((π‘₯ ∈ dom 𝑅1 ∧ 𝑦 ∈ π‘₯) ∧ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ suc (rankβ€˜π‘¦) = suc 𝑦)
4847fveq2d 6896 . . . . . . . . . . . . . . . . 17 (((π‘₯ ∈ dom 𝑅1 ∧ 𝑦 ∈ π‘₯) ∧ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ (𝑅1β€˜suc (rankβ€˜π‘¦)) = (𝑅1β€˜suc 𝑦))
4945, 48eleqtrd 2834 . . . . . . . . . . . . . . . 16 (((π‘₯ ∈ dom 𝑅1 ∧ 𝑦 ∈ π‘₯) ∧ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ 𝑦 ∈ (𝑅1β€˜suc 𝑦))
5043, 49sseldd 3984 . . . . . . . . . . . . . . 15 (((π‘₯ ∈ dom 𝑅1 ∧ 𝑦 ∈ π‘₯) ∧ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ 𝑦 ∈ (𝑅1β€˜π‘₯))
5150ex 412 . . . . . . . . . . . . . 14 ((π‘₯ ∈ dom 𝑅1 ∧ 𝑦 ∈ π‘₯) β†’ ((𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦) β†’ 𝑦 ∈ (𝑅1β€˜π‘₯)))
5251ralimdva 3166 . . . . . . . . . . . . 13 (π‘₯ ∈ dom 𝑅1 β†’ (βˆ€π‘¦ ∈ π‘₯ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦) β†’ βˆ€π‘¦ ∈ π‘₯ 𝑦 ∈ (𝑅1β€˜π‘₯)))
5352imp 406 . . . . . . . . . . . 12 ((π‘₯ ∈ dom 𝑅1 ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ βˆ€π‘¦ ∈ π‘₯ 𝑦 ∈ (𝑅1β€˜π‘₯))
54 dfss3 3971 . . . . . . . . . . . 12 (π‘₯ βŠ† (𝑅1β€˜π‘₯) ↔ βˆ€π‘¦ ∈ π‘₯ 𝑦 ∈ (𝑅1β€˜π‘₯))
5553, 54sylibr 233 . . . . . . . . . . 11 ((π‘₯ ∈ dom 𝑅1 ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ π‘₯ βŠ† (𝑅1β€˜π‘₯))
56 vex 3477 . . . . . . . . . . . 12 π‘₯ ∈ V
5756elpw 4607 . . . . . . . . . . 11 (π‘₯ ∈ 𝒫 (𝑅1β€˜π‘₯) ↔ π‘₯ βŠ† (𝑅1β€˜π‘₯))
5855, 57sylibr 233 . . . . . . . . . 10 ((π‘₯ ∈ dom 𝑅1 ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ π‘₯ ∈ 𝒫 (𝑅1β€˜π‘₯))
59 r1sucg 9767 . . . . . . . . . . 11 (π‘₯ ∈ dom 𝑅1 β†’ (𝑅1β€˜suc π‘₯) = 𝒫 (𝑅1β€˜π‘₯))
6059adantr 480 . . . . . . . . . 10 ((π‘₯ ∈ dom 𝑅1 ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ (𝑅1β€˜suc π‘₯) = 𝒫 (𝑅1β€˜π‘₯))
6158, 60eleqtrrd 2835 . . . . . . . . 9 ((π‘₯ ∈ dom 𝑅1 ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ π‘₯ ∈ (𝑅1β€˜suc π‘₯))
62 r1elwf 9794 . . . . . . . . 9 (π‘₯ ∈ (𝑅1β€˜suc π‘₯) β†’ π‘₯ ∈ βˆͺ (𝑅1 β€œ On))
6361, 62syl 17 . . . . . . . 8 ((π‘₯ ∈ dom 𝑅1 ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ π‘₯ ∈ βˆͺ (𝑅1 β€œ On))
64 rankval3b 9824 . . . . . . . . . 10 (π‘₯ ∈ βˆͺ (𝑅1 β€œ On) β†’ (rankβ€˜π‘₯) = ∩ {𝑧 ∈ On ∣ βˆ€π‘¦ ∈ π‘₯ (rankβ€˜π‘¦) ∈ 𝑧})
6563, 64syl 17 . . . . . . . . 9 ((π‘₯ ∈ dom 𝑅1 ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ (rankβ€˜π‘₯) = ∩ {𝑧 ∈ On ∣ βˆ€π‘¦ ∈ π‘₯ (rankβ€˜π‘¦) ∈ 𝑧})
66 eleq1 2820 . . . . . . . . . . . . . . . 16 ((rankβ€˜π‘¦) = 𝑦 β†’ ((rankβ€˜π‘¦) ∈ 𝑧 ↔ 𝑦 ∈ 𝑧))
6766adantl 481 . . . . . . . . . . . . . . 15 ((𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦) β†’ ((rankβ€˜π‘¦) ∈ 𝑧 ↔ 𝑦 ∈ 𝑧))
6867ralimi 3082 . . . . . . . . . . . . . 14 (βˆ€π‘¦ ∈ π‘₯ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦) β†’ βˆ€π‘¦ ∈ π‘₯ ((rankβ€˜π‘¦) ∈ 𝑧 ↔ 𝑦 ∈ 𝑧))
69 ralbi 3102 . . . . . . . . . . . . . 14 (βˆ€π‘¦ ∈ π‘₯ ((rankβ€˜π‘¦) ∈ 𝑧 ↔ 𝑦 ∈ 𝑧) β†’ (βˆ€π‘¦ ∈ π‘₯ (rankβ€˜π‘¦) ∈ 𝑧 ↔ βˆ€π‘¦ ∈ π‘₯ 𝑦 ∈ 𝑧))
7068, 69syl 17 . . . . . . . . . . . . 13 (βˆ€π‘¦ ∈ π‘₯ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦) β†’ (βˆ€π‘¦ ∈ π‘₯ (rankβ€˜π‘¦) ∈ 𝑧 ↔ βˆ€π‘¦ ∈ π‘₯ 𝑦 ∈ 𝑧))
71 dfss3 3971 . . . . . . . . . . . . 13 (π‘₯ βŠ† 𝑧 ↔ βˆ€π‘¦ ∈ π‘₯ 𝑦 ∈ 𝑧)
7270, 71bitr4di 288 . . . . . . . . . . . 12 (βˆ€π‘¦ ∈ π‘₯ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦) β†’ (βˆ€π‘¦ ∈ π‘₯ (rankβ€˜π‘¦) ∈ 𝑧 ↔ π‘₯ βŠ† 𝑧))
7372rabbidv 3439 . . . . . . . . . . 11 (βˆ€π‘¦ ∈ π‘₯ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦) β†’ {𝑧 ∈ On ∣ βˆ€π‘¦ ∈ π‘₯ (rankβ€˜π‘¦) ∈ 𝑧} = {𝑧 ∈ On ∣ π‘₯ βŠ† 𝑧})
7473inteqd 4956 . . . . . . . . . 10 (βˆ€π‘¦ ∈ π‘₯ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦) β†’ ∩ {𝑧 ∈ On ∣ βˆ€π‘¦ ∈ π‘₯ (rankβ€˜π‘¦) ∈ 𝑧} = ∩ {𝑧 ∈ On ∣ π‘₯ βŠ† 𝑧})
7574adantl 481 . . . . . . . . 9 ((π‘₯ ∈ dom 𝑅1 ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ ∩ {𝑧 ∈ On ∣ βˆ€π‘¦ ∈ π‘₯ (rankβ€˜π‘¦) ∈ 𝑧} = ∩ {𝑧 ∈ On ∣ π‘₯ βŠ† 𝑧})
7629adantr 480 . . . . . . . . . 10 ((π‘₯ ∈ dom 𝑅1 ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ π‘₯ ∈ On)
77 intmin 4973 . . . . . . . . . 10 (π‘₯ ∈ On β†’ ∩ {𝑧 ∈ On ∣ π‘₯ βŠ† 𝑧} = π‘₯)
7876, 77syl 17 . . . . . . . . 9 ((π‘₯ ∈ dom 𝑅1 ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ ∩ {𝑧 ∈ On ∣ π‘₯ βŠ† 𝑧} = π‘₯)
7965, 75, 783eqtrd 2775 . . . . . . . 8 ((π‘₯ ∈ dom 𝑅1 ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ (rankβ€˜π‘₯) = π‘₯)
8063, 79jca 511 . . . . . . 7 ((π‘₯ ∈ dom 𝑅1 ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ (π‘₯ ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘₯) = π‘₯))
8180ex 412 . . . . . 6 (π‘₯ ∈ dom 𝑅1 β†’ (βˆ€π‘¦ ∈ π‘₯ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦) β†’ (π‘₯ ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘₯) = π‘₯)))
8226, 81sylbid 239 . . . . 5 (π‘₯ ∈ dom 𝑅1 β†’ (βˆ€π‘¦ ∈ π‘₯ (𝑦 ∈ dom 𝑅1 β†’ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ (π‘₯ ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘₯) = π‘₯)))
8382com12 32 . . . 4 (βˆ€π‘¦ ∈ π‘₯ (𝑦 ∈ dom 𝑅1 β†’ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ (π‘₯ ∈ dom 𝑅1 β†’ (π‘₯ ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘₯) = π‘₯)))
8483a1i 11 . . 3 (π‘₯ ∈ On β†’ (βˆ€π‘¦ ∈ π‘₯ (𝑦 ∈ dom 𝑅1 β†’ (𝑦 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘¦) = 𝑦)) β†’ (π‘₯ ∈ dom 𝑅1 β†’ (π‘₯ ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π‘₯) = π‘₯))))
8513, 20, 84tfis3 7850 . 2 (𝐴 ∈ On β†’ (𝐴 ∈ dom 𝑅1 β†’ (𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π΄) = 𝐴)))
866, 85mpcom 38 1 (𝐴 ∈ dom 𝑅1 β†’ (𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ (rankβ€˜π΄) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  {crab 3431   βŠ† wss 3949  π’« cpw 4603  βˆͺ cuni 4909  βˆ© cint 4951  dom cdm 5677   β€œ cima 5680  Ord word 6364  Oncon0 6365  Lim wlim 6366  suc csuc 6367  Fun wfun 6538  β€˜cfv 6544  π‘…1cr1 9760  rankcrnk 9761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7415  df-om 7859  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-r1 9762  df-rank 9763
This theorem is referenced by:  rankonid  9827  onwf  9828  onssr1  9829
  Copyright terms: Public domain W3C validator