MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankonidlem Structured version   Visualization version   GIF version

Theorem rankonidlem 9764
Description: Lemma for rankonid 9765. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 22-Mar-2013.)
Assertion
Ref Expression
rankonidlem (𝐴 ∈ dom 𝑅1 → (𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = 𝐴))

Proof of Theorem rankonidlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1funlim 9702 . . . . 5 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 486 . . . 4 Lim dom 𝑅1
3 limord 6377 . . . 4 (Lim dom 𝑅1 → Ord dom 𝑅1)
42, 3ax-mp 5 . . 3 Ord dom 𝑅1
5 ordelon 6341 . . 3 ((Ord dom 𝑅1𝐴 ∈ dom 𝑅1) → 𝐴 ∈ On)
64, 5mpan 688 . 2 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
7 eleq1 2825 . . . 4 (𝑥 = 𝑦 → (𝑥 ∈ dom 𝑅1𝑦 ∈ dom 𝑅1))
8 eleq1 2825 . . . . 5 (𝑥 = 𝑦 → (𝑥 (𝑅1 “ On) ↔ 𝑦 (𝑅1 “ On)))
9 fveq2 6842 . . . . . 6 (𝑥 = 𝑦 → (rank‘𝑥) = (rank‘𝑦))
10 id 22 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
119, 10eqeq12d 2752 . . . . 5 (𝑥 = 𝑦 → ((rank‘𝑥) = 𝑥 ↔ (rank‘𝑦) = 𝑦))
128, 11anbi12d 631 . . . 4 (𝑥 = 𝑦 → ((𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥) ↔ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)))
137, 12imbi12d 344 . . 3 (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝑅1 → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥)) ↔ (𝑦 ∈ dom 𝑅1 → (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦))))
14 eleq1 2825 . . . 4 (𝑥 = 𝐴 → (𝑥 ∈ dom 𝑅1𝐴 ∈ dom 𝑅1))
15 eleq1 2825 . . . . 5 (𝑥 = 𝐴 → (𝑥 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On)))
16 fveq2 6842 . . . . . 6 (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴))
17 id 22 . . . . . 6 (𝑥 = 𝐴𝑥 = 𝐴)
1816, 17eqeq12d 2752 . . . . 5 (𝑥 = 𝐴 → ((rank‘𝑥) = 𝑥 ↔ (rank‘𝐴) = 𝐴))
1915, 18anbi12d 631 . . . 4 (𝑥 = 𝐴 → ((𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥) ↔ (𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = 𝐴)))
2014, 19imbi12d 344 . . 3 (𝑥 = 𝐴 → ((𝑥 ∈ dom 𝑅1 → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥)) ↔ (𝐴 ∈ dom 𝑅1 → (𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = 𝐴))))
21 ordtr1 6360 . . . . . . . . . 10 (Ord dom 𝑅1 → ((𝑦𝑥𝑥 ∈ dom 𝑅1) → 𝑦 ∈ dom 𝑅1))
224, 21ax-mp 5 . . . . . . . . 9 ((𝑦𝑥𝑥 ∈ dom 𝑅1) → 𝑦 ∈ dom 𝑅1)
2322ancoms 459 . . . . . . . 8 ((𝑥 ∈ dom 𝑅1𝑦𝑥) → 𝑦 ∈ dom 𝑅1)
24 pm5.5 361 . . . . . . . 8 (𝑦 ∈ dom 𝑅1 → ((𝑦 ∈ dom 𝑅1 → (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) ↔ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)))
2523, 24syl 17 . . . . . . 7 ((𝑥 ∈ dom 𝑅1𝑦𝑥) → ((𝑦 ∈ dom 𝑅1 → (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) ↔ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)))
2625ralbidva 3172 . . . . . 6 (𝑥 ∈ dom 𝑅1 → (∀𝑦𝑥 (𝑦 ∈ dom 𝑅1 → (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) ↔ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)))
27 simplr 767 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑦𝑥)
28 ordelon 6341 . . . . . . . . . . . . . . . . . . . . . 22 ((Ord dom 𝑅1𝑥 ∈ dom 𝑅1) → 𝑥 ∈ On)
294, 28mpan 688 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ dom 𝑅1𝑥 ∈ On)
3029ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑥 ∈ On)
31 eloni 6327 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → Ord 𝑥)
3230, 31syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → Ord 𝑥)
33 ordelsuc 7755 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝑥 ∧ Ord 𝑥) → (𝑦𝑥 ↔ suc 𝑦𝑥))
3427, 32, 33syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (𝑦𝑥 ↔ suc 𝑦𝑥))
3527, 34mpbid 231 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → suc 𝑦𝑥)
3623adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑦 ∈ dom 𝑅1)
37 limsuc 7785 . . . . . . . . . . . . . . . . . . . 20 (Lim dom 𝑅1 → (𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1))
382, 37ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1)
3936, 38sylib 217 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → suc 𝑦 ∈ dom 𝑅1)
40 simpll 765 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑥 ∈ dom 𝑅1)
41 r1ord3g 9715 . . . . . . . . . . . . . . . . . 18 ((suc 𝑦 ∈ dom 𝑅1𝑥 ∈ dom 𝑅1) → (suc 𝑦𝑥 → (𝑅1‘suc 𝑦) ⊆ (𝑅1𝑥)))
4239, 40, 41syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (suc 𝑦𝑥 → (𝑅1‘suc 𝑦) ⊆ (𝑅1𝑥)))
4335, 42mpd 15 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (𝑅1‘suc 𝑦) ⊆ (𝑅1𝑥))
44 rankidb 9736 . . . . . . . . . . . . . . . . . 18 (𝑦 (𝑅1 “ On) → 𝑦 ∈ (𝑅1‘suc (rank‘𝑦)))
4544ad2antrl 726 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑦 ∈ (𝑅1‘suc (rank‘𝑦)))
46 suceq 6383 . . . . . . . . . . . . . . . . . . 19 ((rank‘𝑦) = 𝑦 → suc (rank‘𝑦) = suc 𝑦)
4746ad2antll 727 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → suc (rank‘𝑦) = suc 𝑦)
4847fveq2d 6846 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (𝑅1‘suc (rank‘𝑦)) = (𝑅1‘suc 𝑦))
4945, 48eleqtrd 2840 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑦 ∈ (𝑅1‘suc 𝑦))
5043, 49sseldd 3945 . . . . . . . . . . . . . . 15 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑦 ∈ (𝑅1𝑥))
5150ex 413 . . . . . . . . . . . . . 14 ((𝑥 ∈ dom 𝑅1𝑦𝑥) → ((𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → 𝑦 ∈ (𝑅1𝑥)))
5251ralimdva 3164 . . . . . . . . . . . . 13 (𝑥 ∈ dom 𝑅1 → (∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → ∀𝑦𝑥 𝑦 ∈ (𝑅1𝑥)))
5352imp 407 . . . . . . . . . . . 12 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → ∀𝑦𝑥 𝑦 ∈ (𝑅1𝑥))
54 dfss3 3932 . . . . . . . . . . . 12 (𝑥 ⊆ (𝑅1𝑥) ↔ ∀𝑦𝑥 𝑦 ∈ (𝑅1𝑥))
5553, 54sylibr 233 . . . . . . . . . . 11 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑥 ⊆ (𝑅1𝑥))
56 vex 3449 . . . . . . . . . . . 12 𝑥 ∈ V
5756elpw 4564 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 (𝑅1𝑥) ↔ 𝑥 ⊆ (𝑅1𝑥))
5855, 57sylibr 233 . . . . . . . . . 10 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑥 ∈ 𝒫 (𝑅1𝑥))
59 r1sucg 9705 . . . . . . . . . . 11 (𝑥 ∈ dom 𝑅1 → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
6059adantr 481 . . . . . . . . . 10 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
6158, 60eleqtrrd 2841 . . . . . . . . 9 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑥 ∈ (𝑅1‘suc 𝑥))
62 r1elwf 9732 . . . . . . . . 9 (𝑥 ∈ (𝑅1‘suc 𝑥) → 𝑥 (𝑅1 “ On))
6361, 62syl 17 . . . . . . . 8 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑥 (𝑅1 “ On))
64 rankval3b 9762 . . . . . . . . . 10 (𝑥 (𝑅1 “ On) → (rank‘𝑥) = {𝑧 ∈ On ∣ ∀𝑦𝑥 (rank‘𝑦) ∈ 𝑧})
6563, 64syl 17 . . . . . . . . 9 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (rank‘𝑥) = {𝑧 ∈ On ∣ ∀𝑦𝑥 (rank‘𝑦) ∈ 𝑧})
66 eleq1 2825 . . . . . . . . . . . . . . . 16 ((rank‘𝑦) = 𝑦 → ((rank‘𝑦) ∈ 𝑧𝑦𝑧))
6766adantl 482 . . . . . . . . . . . . . . 15 ((𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → ((rank‘𝑦) ∈ 𝑧𝑦𝑧))
6867ralimi 3086 . . . . . . . . . . . . . 14 (∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → ∀𝑦𝑥 ((rank‘𝑦) ∈ 𝑧𝑦𝑧))
69 ralbi 3106 . . . . . . . . . . . . . 14 (∀𝑦𝑥 ((rank‘𝑦) ∈ 𝑧𝑦𝑧) → (∀𝑦𝑥 (rank‘𝑦) ∈ 𝑧 ↔ ∀𝑦𝑥 𝑦𝑧))
7068, 69syl 17 . . . . . . . . . . . . 13 (∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → (∀𝑦𝑥 (rank‘𝑦) ∈ 𝑧 ↔ ∀𝑦𝑥 𝑦𝑧))
71 dfss3 3932 . . . . . . . . . . . . 13 (𝑥𝑧 ↔ ∀𝑦𝑥 𝑦𝑧)
7270, 71bitr4di 288 . . . . . . . . . . . 12 (∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → (∀𝑦𝑥 (rank‘𝑦) ∈ 𝑧𝑥𝑧))
7372rabbidv 3415 . . . . . . . . . . 11 (∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → {𝑧 ∈ On ∣ ∀𝑦𝑥 (rank‘𝑦) ∈ 𝑧} = {𝑧 ∈ On ∣ 𝑥𝑧})
7473inteqd 4912 . . . . . . . . . 10 (∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → {𝑧 ∈ On ∣ ∀𝑦𝑥 (rank‘𝑦) ∈ 𝑧} = {𝑧 ∈ On ∣ 𝑥𝑧})
7574adantl 482 . . . . . . . . 9 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → {𝑧 ∈ On ∣ ∀𝑦𝑥 (rank‘𝑦) ∈ 𝑧} = {𝑧 ∈ On ∣ 𝑥𝑧})
7629adantr 481 . . . . . . . . . 10 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑥 ∈ On)
77 intmin 4929 . . . . . . . . . 10 (𝑥 ∈ On → {𝑧 ∈ On ∣ 𝑥𝑧} = 𝑥)
7876, 77syl 17 . . . . . . . . 9 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → {𝑧 ∈ On ∣ 𝑥𝑧} = 𝑥)
7965, 75, 783eqtrd 2780 . . . . . . . 8 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (rank‘𝑥) = 𝑥)
8063, 79jca 512 . . . . . . 7 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥))
8180ex 413 . . . . . 6 (𝑥 ∈ dom 𝑅1 → (∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥)))
8226, 81sylbid 239 . . . . 5 (𝑥 ∈ dom 𝑅1 → (∀𝑦𝑥 (𝑦 ∈ dom 𝑅1 → (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥)))
8382com12 32 . . . 4 (∀𝑦𝑥 (𝑦 ∈ dom 𝑅1 → (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (𝑥 ∈ dom 𝑅1 → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥)))
8483a1i 11 . . 3 (𝑥 ∈ On → (∀𝑦𝑥 (𝑦 ∈ dom 𝑅1 → (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (𝑥 ∈ dom 𝑅1 → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥))))
8513, 20, 84tfis3 7794 . 2 (𝐴 ∈ On → (𝐴 ∈ dom 𝑅1 → (𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = 𝐴)))
866, 85mpcom 38 1 (𝐴 ∈ dom 𝑅1 → (𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  {crab 3407  wss 3910  𝒫 cpw 4560   cuni 4865   cint 4907  dom cdm 5633  cima 5636  Ord word 6316  Oncon0 6317  Lim wlim 6318  suc csuc 6319  Fun wfun 6490  cfv 6496  𝑅1cr1 9698  rankcrnk 9699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-r1 9700  df-rank 9701
This theorem is referenced by:  rankonid  9765  onwf  9766  onssr1  9767
  Copyright terms: Public domain W3C validator