MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankr1ai Structured version   Visualization version   GIF version

Theorem rankr1ai 9841
Description: One direction of rankr1a 9879. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankr1ai (𝐴 ∈ (𝑅1𝐵) → (rank‘𝐴) ∈ 𝐵)

Proof of Theorem rankr1ai
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfvdm 6938 . . 3 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ dom 𝑅1)
2 r1val1 9829 . . . . . 6 (𝐵 ∈ dom 𝑅1 → (𝑅1𝐵) = 𝑥𝐵 𝒫 (𝑅1𝑥))
32eleq2d 2812 . . . . 5 (𝐵 ∈ dom 𝑅1 → (𝐴 ∈ (𝑅1𝐵) ↔ 𝐴 𝑥𝐵 𝒫 (𝑅1𝑥)))
4 eliun 5005 . . . . 5 (𝐴 𝑥𝐵 𝒫 (𝑅1𝑥) ↔ ∃𝑥𝐵 𝐴 ∈ 𝒫 (𝑅1𝑥))
53, 4bitrdi 286 . . . 4 (𝐵 ∈ dom 𝑅1 → (𝐴 ∈ (𝑅1𝐵) ↔ ∃𝑥𝐵 𝐴 ∈ 𝒫 (𝑅1𝑥)))
6 r1funlim 9809 . . . . . . . . . . 11 (Fun 𝑅1 ∧ Lim dom 𝑅1)
76simpri 484 . . . . . . . . . 10 Lim dom 𝑅1
8 limord 6436 . . . . . . . . . 10 (Lim dom 𝑅1 → Ord dom 𝑅1)
97, 8ax-mp 5 . . . . . . . . 9 Ord dom 𝑅1
10 ordtr1 6419 . . . . . . . . 9 (Ord dom 𝑅1 → ((𝑥𝐵𝐵 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1))
119, 10ax-mp 5 . . . . . . . 8 ((𝑥𝐵𝐵 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1)
1211ancoms 457 . . . . . . 7 ((𝐵 ∈ dom 𝑅1𝑥𝐵) → 𝑥 ∈ dom 𝑅1)
13 r1sucg 9812 . . . . . . . 8 (𝑥 ∈ dom 𝑅1 → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
1413eleq2d 2812 . . . . . . 7 (𝑥 ∈ dom 𝑅1 → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ 𝒫 (𝑅1𝑥)))
1512, 14syl 17 . . . . . 6 ((𝐵 ∈ dom 𝑅1𝑥𝐵) → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ 𝒫 (𝑅1𝑥)))
16 ordsson 7791 . . . . . . . . . 10 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
179, 16ax-mp 5 . . . . . . . . 9 dom 𝑅1 ⊆ On
1817, 12sselid 3977 . . . . . . . 8 ((𝐵 ∈ dom 𝑅1𝑥𝐵) → 𝑥 ∈ On)
19 rabid 3440 . . . . . . . . 9 (𝑥 ∈ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ↔ (𝑥 ∈ On ∧ 𝐴 ∈ (𝑅1‘suc 𝑥)))
20 intss1 4971 . . . . . . . . 9 (𝑥 ∈ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥)
2119, 20sylbir 234 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝐴 ∈ (𝑅1‘suc 𝑥)) → {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥)
2218, 21sylan 578 . . . . . . 7 (((𝐵 ∈ dom 𝑅1𝑥𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝑥)) → {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥)
2322ex 411 . . . . . 6 ((𝐵 ∈ dom 𝑅1𝑥𝐵) → (𝐴 ∈ (𝑅1‘suc 𝑥) → {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥))
2415, 23sylbird 259 . . . . 5 ((𝐵 ∈ dom 𝑅1𝑥𝐵) → (𝐴 ∈ 𝒫 (𝑅1𝑥) → {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥))
2524reximdva 3158 . . . 4 (𝐵 ∈ dom 𝑅1 → (∃𝑥𝐵 𝐴 ∈ 𝒫 (𝑅1𝑥) → ∃𝑥𝐵 {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥))
265, 25sylbid 239 . . 3 (𝐵 ∈ dom 𝑅1 → (𝐴 ∈ (𝑅1𝐵) → ∃𝑥𝐵 {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥))
271, 26mpcom 38 . 2 (𝐴 ∈ (𝑅1𝐵) → ∃𝑥𝐵 {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥)
28 r1elwf 9839 . . . . . . 7 (𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))
29 rankvalb 9840 . . . . . . 7 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
3028, 29syl 17 . . . . . 6 (𝐴 ∈ (𝑅1𝐵) → (rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
3130sseq1d 4011 . . . . 5 (𝐴 ∈ (𝑅1𝐵) → ((rank‘𝐴) ⊆ 𝑥 {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥))
3231adantr 479 . . . 4 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝑥𝐵) → ((rank‘𝐴) ⊆ 𝑥 {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥))
33 rankon 9838 . . . . . . 7 (rank‘𝐴) ∈ On
3417, 1sselid 3977 . . . . . . 7 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ On)
35 ontr2 6423 . . . . . . 7 (((rank‘𝐴) ∈ On ∧ 𝐵 ∈ On) → (((rank‘𝐴) ⊆ 𝑥𝑥𝐵) → (rank‘𝐴) ∈ 𝐵))
3633, 34, 35sylancr 585 . . . . . 6 (𝐴 ∈ (𝑅1𝐵) → (((rank‘𝐴) ⊆ 𝑥𝑥𝐵) → (rank‘𝐴) ∈ 𝐵))
3736expcomd 415 . . . . 5 (𝐴 ∈ (𝑅1𝐵) → (𝑥𝐵 → ((rank‘𝐴) ⊆ 𝑥 → (rank‘𝐴) ∈ 𝐵)))
3837imp 405 . . . 4 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝑥𝐵) → ((rank‘𝐴) ⊆ 𝑥 → (rank‘𝐴) ∈ 𝐵))
3932, 38sylbird 259 . . 3 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝑥𝐵) → ( {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥 → (rank‘𝐴) ∈ 𝐵))
4039rexlimdva 3145 . 2 (𝐴 ∈ (𝑅1𝐵) → (∃𝑥𝐵 {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥 → (rank‘𝐴) ∈ 𝐵))
4127, 40mpd 15 1 (𝐴 ∈ (𝑅1𝐵) → (rank‘𝐴) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wrex 3060  {crab 3419  wss 3947  𝒫 cpw 4607   cuni 4913   cint 4954   ciun 5001  dom cdm 5682  cima 5685  Ord word 6375  Oncon0 6376  Lim wlim 6377  suc csuc 6378  Fun wfun 6548  cfv 6554  𝑅1cr1 9805  rankcrnk 9806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-r1 9807  df-rank 9808
This theorem is referenced by:  rankr1ag  9845  tcrank  9927  dfac12lem1  10186  dfac12lem2  10187  r1limwun  10779  inatsk  10821  aomclem4  42718  r1rankcld  43905
  Copyright terms: Public domain W3C validator