MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankr1ai Structured version   Visualization version   GIF version

Theorem rankr1ai 9867
Description: One direction of rankr1a 9905. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankr1ai (𝐴 ∈ (𝑅1𝐵) → (rank‘𝐴) ∈ 𝐵)

Proof of Theorem rankr1ai
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfvdm 6957 . . 3 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ dom 𝑅1)
2 r1val1 9855 . . . . . 6 (𝐵 ∈ dom 𝑅1 → (𝑅1𝐵) = 𝑥𝐵 𝒫 (𝑅1𝑥))
32eleq2d 2830 . . . . 5 (𝐵 ∈ dom 𝑅1 → (𝐴 ∈ (𝑅1𝐵) ↔ 𝐴 𝑥𝐵 𝒫 (𝑅1𝑥)))
4 eliun 5019 . . . . 5 (𝐴 𝑥𝐵 𝒫 (𝑅1𝑥) ↔ ∃𝑥𝐵 𝐴 ∈ 𝒫 (𝑅1𝑥))
53, 4bitrdi 287 . . . 4 (𝐵 ∈ dom 𝑅1 → (𝐴 ∈ (𝑅1𝐵) ↔ ∃𝑥𝐵 𝐴 ∈ 𝒫 (𝑅1𝑥)))
6 r1funlim 9835 . . . . . . . . . . 11 (Fun 𝑅1 ∧ Lim dom 𝑅1)
76simpri 485 . . . . . . . . . 10 Lim dom 𝑅1
8 limord 6455 . . . . . . . . . 10 (Lim dom 𝑅1 → Ord dom 𝑅1)
97, 8ax-mp 5 . . . . . . . . 9 Ord dom 𝑅1
10 ordtr1 6438 . . . . . . . . 9 (Ord dom 𝑅1 → ((𝑥𝐵𝐵 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1))
119, 10ax-mp 5 . . . . . . . 8 ((𝑥𝐵𝐵 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1)
1211ancoms 458 . . . . . . 7 ((𝐵 ∈ dom 𝑅1𝑥𝐵) → 𝑥 ∈ dom 𝑅1)
13 r1sucg 9838 . . . . . . . 8 (𝑥 ∈ dom 𝑅1 → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
1413eleq2d 2830 . . . . . . 7 (𝑥 ∈ dom 𝑅1 → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ 𝒫 (𝑅1𝑥)))
1512, 14syl 17 . . . . . 6 ((𝐵 ∈ dom 𝑅1𝑥𝐵) → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ 𝒫 (𝑅1𝑥)))
16 ordsson 7818 . . . . . . . . . 10 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
179, 16ax-mp 5 . . . . . . . . 9 dom 𝑅1 ⊆ On
1817, 12sselid 4006 . . . . . . . 8 ((𝐵 ∈ dom 𝑅1𝑥𝐵) → 𝑥 ∈ On)
19 rabid 3465 . . . . . . . . 9 (𝑥 ∈ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ↔ (𝑥 ∈ On ∧ 𝐴 ∈ (𝑅1‘suc 𝑥)))
20 intss1 4987 . . . . . . . . 9 (𝑥 ∈ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥)
2119, 20sylbir 235 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝐴 ∈ (𝑅1‘suc 𝑥)) → {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥)
2218, 21sylan 579 . . . . . . 7 (((𝐵 ∈ dom 𝑅1𝑥𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝑥)) → {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥)
2322ex 412 . . . . . 6 ((𝐵 ∈ dom 𝑅1𝑥𝐵) → (𝐴 ∈ (𝑅1‘suc 𝑥) → {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥))
2415, 23sylbird 260 . . . . 5 ((𝐵 ∈ dom 𝑅1𝑥𝐵) → (𝐴 ∈ 𝒫 (𝑅1𝑥) → {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥))
2524reximdva 3174 . . . 4 (𝐵 ∈ dom 𝑅1 → (∃𝑥𝐵 𝐴 ∈ 𝒫 (𝑅1𝑥) → ∃𝑥𝐵 {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥))
265, 25sylbid 240 . . 3 (𝐵 ∈ dom 𝑅1 → (𝐴 ∈ (𝑅1𝐵) → ∃𝑥𝐵 {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥))
271, 26mpcom 38 . 2 (𝐴 ∈ (𝑅1𝐵) → ∃𝑥𝐵 {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥)
28 r1elwf 9865 . . . . . . 7 (𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))
29 rankvalb 9866 . . . . . . 7 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
3028, 29syl 17 . . . . . 6 (𝐴 ∈ (𝑅1𝐵) → (rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
3130sseq1d 4040 . . . . 5 (𝐴 ∈ (𝑅1𝐵) → ((rank‘𝐴) ⊆ 𝑥 {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥))
3231adantr 480 . . . 4 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝑥𝐵) → ((rank‘𝐴) ⊆ 𝑥 {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥))
33 rankon 9864 . . . . . . 7 (rank‘𝐴) ∈ On
3417, 1sselid 4006 . . . . . . 7 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ On)
35 ontr2 6442 . . . . . . 7 (((rank‘𝐴) ∈ On ∧ 𝐵 ∈ On) → (((rank‘𝐴) ⊆ 𝑥𝑥𝐵) → (rank‘𝐴) ∈ 𝐵))
3633, 34, 35sylancr 586 . . . . . 6 (𝐴 ∈ (𝑅1𝐵) → (((rank‘𝐴) ⊆ 𝑥𝑥𝐵) → (rank‘𝐴) ∈ 𝐵))
3736expcomd 416 . . . . 5 (𝐴 ∈ (𝑅1𝐵) → (𝑥𝐵 → ((rank‘𝐴) ⊆ 𝑥 → (rank‘𝐴) ∈ 𝐵)))
3837imp 406 . . . 4 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝑥𝐵) → ((rank‘𝐴) ⊆ 𝑥 → (rank‘𝐴) ∈ 𝐵))
3932, 38sylbird 260 . . 3 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝑥𝐵) → ( {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥 → (rank‘𝐴) ∈ 𝐵))
4039rexlimdva 3161 . 2 (𝐴 ∈ (𝑅1𝐵) → (∃𝑥𝐵 {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥 → (rank‘𝐴) ∈ 𝐵))
4127, 40mpd 15 1 (𝐴 ∈ (𝑅1𝐵) → (rank‘𝐴) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  wss 3976  𝒫 cpw 4622   cuni 4931   cint 4970   ciun 5015  dom cdm 5700  cima 5703  Ord word 6394  Oncon0 6395  Lim wlim 6396  suc csuc 6397  Fun wfun 6567  cfv 6573  𝑅1cr1 9831  rankcrnk 9832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-r1 9833  df-rank 9834
This theorem is referenced by:  rankr1ag  9871  tcrank  9953  dfac12lem1  10213  dfac12lem2  10214  r1limwun  10805  inatsk  10847  aomclem4  43014  r1rankcld  44200
  Copyright terms: Public domain W3C validator