MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankr1ai Structured version   Visualization version   GIF version

Theorem rankr1ai 9795
Description: One direction of rankr1a 9833. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankr1ai (𝐴 ∈ (𝑅1β€˜π΅) β†’ (rankβ€˜π΄) ∈ 𝐡)

Proof of Theorem rankr1ai
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 elfvdm 6928 . . 3 (𝐴 ∈ (𝑅1β€˜π΅) β†’ 𝐡 ∈ dom 𝑅1)
2 r1val1 9783 . . . . . 6 (𝐡 ∈ dom 𝑅1 β†’ (𝑅1β€˜π΅) = βˆͺ π‘₯ ∈ 𝐡 𝒫 (𝑅1β€˜π‘₯))
32eleq2d 2819 . . . . 5 (𝐡 ∈ dom 𝑅1 β†’ (𝐴 ∈ (𝑅1β€˜π΅) ↔ 𝐴 ∈ βˆͺ π‘₯ ∈ 𝐡 𝒫 (𝑅1β€˜π‘₯)))
4 eliun 5001 . . . . 5 (𝐴 ∈ βˆͺ π‘₯ ∈ 𝐡 𝒫 (𝑅1β€˜π‘₯) ↔ βˆƒπ‘₯ ∈ 𝐡 𝐴 ∈ 𝒫 (𝑅1β€˜π‘₯))
53, 4bitrdi 286 . . . 4 (𝐡 ∈ dom 𝑅1 β†’ (𝐴 ∈ (𝑅1β€˜π΅) ↔ βˆƒπ‘₯ ∈ 𝐡 𝐴 ∈ 𝒫 (𝑅1β€˜π‘₯)))
6 r1funlim 9763 . . . . . . . . . . 11 (Fun 𝑅1 ∧ Lim dom 𝑅1)
76simpri 486 . . . . . . . . . 10 Lim dom 𝑅1
8 limord 6424 . . . . . . . . . 10 (Lim dom 𝑅1 β†’ Ord dom 𝑅1)
97, 8ax-mp 5 . . . . . . . . 9 Ord dom 𝑅1
10 ordtr1 6407 . . . . . . . . 9 (Ord dom 𝑅1 β†’ ((π‘₯ ∈ 𝐡 ∧ 𝐡 ∈ dom 𝑅1) β†’ π‘₯ ∈ dom 𝑅1))
119, 10ax-mp 5 . . . . . . . 8 ((π‘₯ ∈ 𝐡 ∧ 𝐡 ∈ dom 𝑅1) β†’ π‘₯ ∈ dom 𝑅1)
1211ancoms 459 . . . . . . 7 ((𝐡 ∈ dom 𝑅1 ∧ π‘₯ ∈ 𝐡) β†’ π‘₯ ∈ dom 𝑅1)
13 r1sucg 9766 . . . . . . . 8 (π‘₯ ∈ dom 𝑅1 β†’ (𝑅1β€˜suc π‘₯) = 𝒫 (𝑅1β€˜π‘₯))
1413eleq2d 2819 . . . . . . 7 (π‘₯ ∈ dom 𝑅1 β†’ (𝐴 ∈ (𝑅1β€˜suc π‘₯) ↔ 𝐴 ∈ 𝒫 (𝑅1β€˜π‘₯)))
1512, 14syl 17 . . . . . 6 ((𝐡 ∈ dom 𝑅1 ∧ π‘₯ ∈ 𝐡) β†’ (𝐴 ∈ (𝑅1β€˜suc π‘₯) ↔ 𝐴 ∈ 𝒫 (𝑅1β€˜π‘₯)))
16 ordsson 7772 . . . . . . . . . 10 (Ord dom 𝑅1 β†’ dom 𝑅1 βŠ† On)
179, 16ax-mp 5 . . . . . . . . 9 dom 𝑅1 βŠ† On
1817, 12sselid 3980 . . . . . . . 8 ((𝐡 ∈ dom 𝑅1 ∧ π‘₯ ∈ 𝐡) β†’ π‘₯ ∈ On)
19 rabid 3452 . . . . . . . . 9 (π‘₯ ∈ {π‘₯ ∈ On ∣ 𝐴 ∈ (𝑅1β€˜suc π‘₯)} ↔ (π‘₯ ∈ On ∧ 𝐴 ∈ (𝑅1β€˜suc π‘₯)))
20 intss1 4967 . . . . . . . . 9 (π‘₯ ∈ {π‘₯ ∈ On ∣ 𝐴 ∈ (𝑅1β€˜suc π‘₯)} β†’ ∩ {π‘₯ ∈ On ∣ 𝐴 ∈ (𝑅1β€˜suc π‘₯)} βŠ† π‘₯)
2119, 20sylbir 234 . . . . . . . 8 ((π‘₯ ∈ On ∧ 𝐴 ∈ (𝑅1β€˜suc π‘₯)) β†’ ∩ {π‘₯ ∈ On ∣ 𝐴 ∈ (𝑅1β€˜suc π‘₯)} βŠ† π‘₯)
2218, 21sylan 580 . . . . . . 7 (((𝐡 ∈ dom 𝑅1 ∧ π‘₯ ∈ 𝐡) ∧ 𝐴 ∈ (𝑅1β€˜suc π‘₯)) β†’ ∩ {π‘₯ ∈ On ∣ 𝐴 ∈ (𝑅1β€˜suc π‘₯)} βŠ† π‘₯)
2322ex 413 . . . . . 6 ((𝐡 ∈ dom 𝑅1 ∧ π‘₯ ∈ 𝐡) β†’ (𝐴 ∈ (𝑅1β€˜suc π‘₯) β†’ ∩ {π‘₯ ∈ On ∣ 𝐴 ∈ (𝑅1β€˜suc π‘₯)} βŠ† π‘₯))
2415, 23sylbird 259 . . . . 5 ((𝐡 ∈ dom 𝑅1 ∧ π‘₯ ∈ 𝐡) β†’ (𝐴 ∈ 𝒫 (𝑅1β€˜π‘₯) β†’ ∩ {π‘₯ ∈ On ∣ 𝐴 ∈ (𝑅1β€˜suc π‘₯)} βŠ† π‘₯))
2524reximdva 3168 . . . 4 (𝐡 ∈ dom 𝑅1 β†’ (βˆƒπ‘₯ ∈ 𝐡 𝐴 ∈ 𝒫 (𝑅1β€˜π‘₯) β†’ βˆƒπ‘₯ ∈ 𝐡 ∩ {π‘₯ ∈ On ∣ 𝐴 ∈ (𝑅1β€˜suc π‘₯)} βŠ† π‘₯))
265, 25sylbid 239 . . 3 (𝐡 ∈ dom 𝑅1 β†’ (𝐴 ∈ (𝑅1β€˜π΅) β†’ βˆƒπ‘₯ ∈ 𝐡 ∩ {π‘₯ ∈ On ∣ 𝐴 ∈ (𝑅1β€˜suc π‘₯)} βŠ† π‘₯))
271, 26mpcom 38 . 2 (𝐴 ∈ (𝑅1β€˜π΅) β†’ βˆƒπ‘₯ ∈ 𝐡 ∩ {π‘₯ ∈ On ∣ 𝐴 ∈ (𝑅1β€˜suc π‘₯)} βŠ† π‘₯)
28 r1elwf 9793 . . . . . . 7 (𝐴 ∈ (𝑅1β€˜π΅) β†’ 𝐴 ∈ βˆͺ (𝑅1 β€œ On))
29 rankvalb 9794 . . . . . . 7 (𝐴 ∈ βˆͺ (𝑅1 β€œ On) β†’ (rankβ€˜π΄) = ∩ {π‘₯ ∈ On ∣ 𝐴 ∈ (𝑅1β€˜suc π‘₯)})
3028, 29syl 17 . . . . . 6 (𝐴 ∈ (𝑅1β€˜π΅) β†’ (rankβ€˜π΄) = ∩ {π‘₯ ∈ On ∣ 𝐴 ∈ (𝑅1β€˜suc π‘₯)})
3130sseq1d 4013 . . . . 5 (𝐴 ∈ (𝑅1β€˜π΅) β†’ ((rankβ€˜π΄) βŠ† π‘₯ ↔ ∩ {π‘₯ ∈ On ∣ 𝐴 ∈ (𝑅1β€˜suc π‘₯)} βŠ† π‘₯))
3231adantr 481 . . . 4 ((𝐴 ∈ (𝑅1β€˜π΅) ∧ π‘₯ ∈ 𝐡) β†’ ((rankβ€˜π΄) βŠ† π‘₯ ↔ ∩ {π‘₯ ∈ On ∣ 𝐴 ∈ (𝑅1β€˜suc π‘₯)} βŠ† π‘₯))
33 rankon 9792 . . . . . . 7 (rankβ€˜π΄) ∈ On
3417, 1sselid 3980 . . . . . . 7 (𝐴 ∈ (𝑅1β€˜π΅) β†’ 𝐡 ∈ On)
35 ontr2 6411 . . . . . . 7 (((rankβ€˜π΄) ∈ On ∧ 𝐡 ∈ On) β†’ (((rankβ€˜π΄) βŠ† π‘₯ ∧ π‘₯ ∈ 𝐡) β†’ (rankβ€˜π΄) ∈ 𝐡))
3633, 34, 35sylancr 587 . . . . . 6 (𝐴 ∈ (𝑅1β€˜π΅) β†’ (((rankβ€˜π΄) βŠ† π‘₯ ∧ π‘₯ ∈ 𝐡) β†’ (rankβ€˜π΄) ∈ 𝐡))
3736expcomd 417 . . . . 5 (𝐴 ∈ (𝑅1β€˜π΅) β†’ (π‘₯ ∈ 𝐡 β†’ ((rankβ€˜π΄) βŠ† π‘₯ β†’ (rankβ€˜π΄) ∈ 𝐡)))
3837imp 407 . . . 4 ((𝐴 ∈ (𝑅1β€˜π΅) ∧ π‘₯ ∈ 𝐡) β†’ ((rankβ€˜π΄) βŠ† π‘₯ β†’ (rankβ€˜π΄) ∈ 𝐡))
3932, 38sylbird 259 . . 3 ((𝐴 ∈ (𝑅1β€˜π΅) ∧ π‘₯ ∈ 𝐡) β†’ (∩ {π‘₯ ∈ On ∣ 𝐴 ∈ (𝑅1β€˜suc π‘₯)} βŠ† π‘₯ β†’ (rankβ€˜π΄) ∈ 𝐡))
4039rexlimdva 3155 . 2 (𝐴 ∈ (𝑅1β€˜π΅) β†’ (βˆƒπ‘₯ ∈ 𝐡 ∩ {π‘₯ ∈ On ∣ 𝐴 ∈ (𝑅1β€˜suc π‘₯)} βŠ† π‘₯ β†’ (rankβ€˜π΄) ∈ 𝐡))
4127, 40mpd 15 1 (𝐴 ∈ (𝑅1β€˜π΅) β†’ (rankβ€˜π΄) ∈ 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070  {crab 3432   βŠ† wss 3948  π’« cpw 4602  βˆͺ cuni 4908  βˆ© cint 4950  βˆͺ ciun 4997  dom cdm 5676   β€œ cima 5679  Ord word 6363  Oncon0 6364  Lim wlim 6365  suc csuc 6366  Fun wfun 6537  β€˜cfv 6543  π‘…1cr1 9759  rankcrnk 9760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-r1 9761  df-rank 9762
This theorem is referenced by:  rankr1ag  9799  tcrank  9881  dfac12lem1  10140  dfac12lem2  10141  r1limwun  10733  inatsk  10775  aomclem4  41881  r1rankcld  43072
  Copyright terms: Public domain W3C validator