MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankr1ai Structured version   Visualization version   GIF version

Theorem rankr1ai 9758
Description: One direction of rankr1a 9796. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankr1ai (𝐴 ∈ (𝑅1𝐵) → (rank‘𝐴) ∈ 𝐵)

Proof of Theorem rankr1ai
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfvdm 6898 . . 3 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ dom 𝑅1)
2 r1val1 9746 . . . . . 6 (𝐵 ∈ dom 𝑅1 → (𝑅1𝐵) = 𝑥𝐵 𝒫 (𝑅1𝑥))
32eleq2d 2815 . . . . 5 (𝐵 ∈ dom 𝑅1 → (𝐴 ∈ (𝑅1𝐵) ↔ 𝐴 𝑥𝐵 𝒫 (𝑅1𝑥)))
4 eliun 4962 . . . . 5 (𝐴 𝑥𝐵 𝒫 (𝑅1𝑥) ↔ ∃𝑥𝐵 𝐴 ∈ 𝒫 (𝑅1𝑥))
53, 4bitrdi 287 . . . 4 (𝐵 ∈ dom 𝑅1 → (𝐴 ∈ (𝑅1𝐵) ↔ ∃𝑥𝐵 𝐴 ∈ 𝒫 (𝑅1𝑥)))
6 r1funlim 9726 . . . . . . . . . . 11 (Fun 𝑅1 ∧ Lim dom 𝑅1)
76simpri 485 . . . . . . . . . 10 Lim dom 𝑅1
8 limord 6396 . . . . . . . . . 10 (Lim dom 𝑅1 → Ord dom 𝑅1)
97, 8ax-mp 5 . . . . . . . . 9 Ord dom 𝑅1
10 ordtr1 6379 . . . . . . . . 9 (Ord dom 𝑅1 → ((𝑥𝐵𝐵 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1))
119, 10ax-mp 5 . . . . . . . 8 ((𝑥𝐵𝐵 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1)
1211ancoms 458 . . . . . . 7 ((𝐵 ∈ dom 𝑅1𝑥𝐵) → 𝑥 ∈ dom 𝑅1)
13 r1sucg 9729 . . . . . . . 8 (𝑥 ∈ dom 𝑅1 → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
1413eleq2d 2815 . . . . . . 7 (𝑥 ∈ dom 𝑅1 → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ 𝒫 (𝑅1𝑥)))
1512, 14syl 17 . . . . . 6 ((𝐵 ∈ dom 𝑅1𝑥𝐵) → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ 𝒫 (𝑅1𝑥)))
16 ordsson 7762 . . . . . . . . . 10 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
179, 16ax-mp 5 . . . . . . . . 9 dom 𝑅1 ⊆ On
1817, 12sselid 3947 . . . . . . . 8 ((𝐵 ∈ dom 𝑅1𝑥𝐵) → 𝑥 ∈ On)
19 rabid 3430 . . . . . . . . 9 (𝑥 ∈ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ↔ (𝑥 ∈ On ∧ 𝐴 ∈ (𝑅1‘suc 𝑥)))
20 intss1 4930 . . . . . . . . 9 (𝑥 ∈ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥)
2119, 20sylbir 235 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝐴 ∈ (𝑅1‘suc 𝑥)) → {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥)
2218, 21sylan 580 . . . . . . 7 (((𝐵 ∈ dom 𝑅1𝑥𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝑥)) → {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥)
2322ex 412 . . . . . 6 ((𝐵 ∈ dom 𝑅1𝑥𝐵) → (𝐴 ∈ (𝑅1‘suc 𝑥) → {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥))
2415, 23sylbird 260 . . . . 5 ((𝐵 ∈ dom 𝑅1𝑥𝐵) → (𝐴 ∈ 𝒫 (𝑅1𝑥) → {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥))
2524reximdva 3147 . . . 4 (𝐵 ∈ dom 𝑅1 → (∃𝑥𝐵 𝐴 ∈ 𝒫 (𝑅1𝑥) → ∃𝑥𝐵 {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥))
265, 25sylbid 240 . . 3 (𝐵 ∈ dom 𝑅1 → (𝐴 ∈ (𝑅1𝐵) → ∃𝑥𝐵 {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥))
271, 26mpcom 38 . 2 (𝐴 ∈ (𝑅1𝐵) → ∃𝑥𝐵 {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥)
28 r1elwf 9756 . . . . . . 7 (𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))
29 rankvalb 9757 . . . . . . 7 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
3028, 29syl 17 . . . . . 6 (𝐴 ∈ (𝑅1𝐵) → (rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
3130sseq1d 3981 . . . . 5 (𝐴 ∈ (𝑅1𝐵) → ((rank‘𝐴) ⊆ 𝑥 {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥))
3231adantr 480 . . . 4 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝑥𝐵) → ((rank‘𝐴) ⊆ 𝑥 {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥))
33 rankon 9755 . . . . . . 7 (rank‘𝐴) ∈ On
3417, 1sselid 3947 . . . . . . 7 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ On)
35 ontr2 6383 . . . . . . 7 (((rank‘𝐴) ∈ On ∧ 𝐵 ∈ On) → (((rank‘𝐴) ⊆ 𝑥𝑥𝐵) → (rank‘𝐴) ∈ 𝐵))
3633, 34, 35sylancr 587 . . . . . 6 (𝐴 ∈ (𝑅1𝐵) → (((rank‘𝐴) ⊆ 𝑥𝑥𝐵) → (rank‘𝐴) ∈ 𝐵))
3736expcomd 416 . . . . 5 (𝐴 ∈ (𝑅1𝐵) → (𝑥𝐵 → ((rank‘𝐴) ⊆ 𝑥 → (rank‘𝐴) ∈ 𝐵)))
3837imp 406 . . . 4 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝑥𝐵) → ((rank‘𝐴) ⊆ 𝑥 → (rank‘𝐴) ∈ 𝐵))
3932, 38sylbird 260 . . 3 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝑥𝐵) → ( {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥 → (rank‘𝐴) ∈ 𝐵))
4039rexlimdva 3135 . 2 (𝐴 ∈ (𝑅1𝐵) → (∃𝑥𝐵 {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ⊆ 𝑥 → (rank‘𝐴) ∈ 𝐵))
4127, 40mpd 15 1 (𝐴 ∈ (𝑅1𝐵) → (rank‘𝐴) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  {crab 3408  wss 3917  𝒫 cpw 4566   cuni 4874   cint 4913   ciun 4958  dom cdm 5641  cima 5644  Ord word 6334  Oncon0 6335  Lim wlim 6336  suc csuc 6337  Fun wfun 6508  cfv 6514  𝑅1cr1 9722  rankcrnk 9723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-r1 9724  df-rank 9725
This theorem is referenced by:  rankr1ag  9762  tcrank  9844  dfac12lem1  10104  dfac12lem2  10105  r1limwun  10696  inatsk  10738  onvf1odlem4  35100  aomclem4  43053  r1rankcld  44227
  Copyright terms: Public domain W3C validator