![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtri2or3 | Structured version Visualization version GIF version |
Description: A consequence of total ordering for ordinal classes. Similar to ordtri2or2 6457. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ordtri2or3 | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = (𝐴 ∩ 𝐵) ∨ 𝐵 = (𝐴 ∩ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtri2or2 6457 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | |
2 | dfss 3961 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | |
3 | sseqin2 4210 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) = 𝐵) | |
4 | eqcom 2733 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = 𝐵 ↔ 𝐵 = (𝐴 ∩ 𝐵)) | |
5 | 3, 4 | bitri 275 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ 𝐵 = (𝐴 ∩ 𝐵)) |
6 | 2, 5 | orbi12i 911 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) ↔ (𝐴 = (𝐴 ∩ 𝐵) ∨ 𝐵 = (𝐴 ∩ 𝐵))) |
7 | 1, 6 | sylib 217 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = (𝐴 ∩ 𝐵) ∨ 𝐵 = (𝐴 ∩ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 = wceq 1533 ∩ cin 3942 ⊆ wss 3943 Ord word 6357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-tr 5259 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-ord 6361 |
This theorem is referenced by: ordelinel 6459 |
Copyright terms: Public domain | W3C validator |