Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orngrmullt Structured version   Visualization version   GIF version

Theorem orngrmullt 30145
Description: In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018.)
Hypotheses
Ref Expression
ornglmullt.b 𝐵 = (Base‘𝑅)
ornglmullt.t · = (.r𝑅)
ornglmullt.0 0 = (0g𝑅)
ornglmullt.1 (𝜑𝑅 ∈ oRing)
ornglmullt.2 (𝜑𝑋𝐵)
ornglmullt.3 (𝜑𝑌𝐵)
ornglmullt.4 (𝜑𝑍𝐵)
ornglmullt.l < = (lt‘𝑅)
ornglmullt.d (𝜑𝑅 ∈ DivRing)
ornglmullt.5 (𝜑𝑋 < 𝑌)
ornglmullt.6 (𝜑0 < 𝑍)
Assertion
Ref Expression
orngrmullt (𝜑 → (𝑋 · 𝑍) < (𝑌 · 𝑍))

Proof of Theorem orngrmullt
StepHypRef Expression
1 ornglmullt.b . . 3 𝐵 = (Base‘𝑅)
2 ornglmullt.t . . 3 · = (.r𝑅)
3 ornglmullt.0 . . 3 0 = (0g𝑅)
4 ornglmullt.1 . . 3 (𝜑𝑅 ∈ oRing)
5 ornglmullt.2 . . 3 (𝜑𝑋𝐵)
6 ornglmullt.3 . . 3 (𝜑𝑌𝐵)
7 ornglmullt.4 . . 3 (𝜑𝑍𝐵)
8 eqid 2771 . . 3 (le‘𝑅) = (le‘𝑅)
9 ornglmullt.5 . . . 4 (𝜑𝑋 < 𝑌)
10 ornglmullt.l . . . . . 6 < = (lt‘𝑅)
118, 10pltle 17168 . . . . 5 ((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋(le‘𝑅)𝑌))
1211imp 393 . . . 4 (((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋(le‘𝑅)𝑌)
134, 5, 6, 9, 12syl31anc 1479 . . 3 (𝜑𝑋(le‘𝑅)𝑌)
14 orngring 30137 . . . . . 6 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
154, 14syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
16 ringgrp 18759 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
171, 3grpidcl 17657 . . . . 5 (𝑅 ∈ Grp → 0𝐵)
1815, 16, 173syl 18 . . . 4 (𝜑0𝐵)
19 ornglmullt.6 . . . 4 (𝜑0 < 𝑍)
208, 10pltle 17168 . . . . 5 ((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) → ( 0 < 𝑍0 (le‘𝑅)𝑍))
2120imp 393 . . . 4 (((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) ∧ 0 < 𝑍) → 0 (le‘𝑅)𝑍)
224, 18, 7, 19, 21syl31anc 1479 . . 3 (𝜑0 (le‘𝑅)𝑍)
231, 2, 3, 4, 5, 6, 7, 8, 13, 22orngrmulle 30143 . 2 (𝜑 → (𝑋 · 𝑍)(le‘𝑅)(𝑌 · 𝑍))
24 simpr 471 . . . . . 6 ((𝜑 ∧ (𝑋 · 𝑍) = (𝑌 · 𝑍)) → (𝑋 · 𝑍) = (𝑌 · 𝑍))
2524oveq1d 6807 . . . . 5 ((𝜑 ∧ (𝑋 · 𝑍) = (𝑌 · 𝑍)) → ((𝑋 · 𝑍)(/r𝑅)𝑍) = ((𝑌 · 𝑍)(/r𝑅)𝑍))
26 ornglmullt.d . . . . . . . 8 (𝜑𝑅 ∈ DivRing)
2710pltne 17169 . . . . . . . . . . 11 ((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) → ( 0 < 𝑍0𝑍))
2827imp 393 . . . . . . . . . 10 (((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) ∧ 0 < 𝑍) → 0𝑍)
294, 18, 7, 19, 28syl31anc 1479 . . . . . . . . 9 (𝜑0𝑍)
3029necomd 2998 . . . . . . . 8 (𝜑𝑍0 )
31 eqid 2771 . . . . . . . . . 10 (Unit‘𝑅) = (Unit‘𝑅)
321, 31, 3drngunit 18961 . . . . . . . . 9 (𝑅 ∈ DivRing → (𝑍 ∈ (Unit‘𝑅) ↔ (𝑍𝐵𝑍0 )))
3332biimpar 463 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ (𝑍𝐵𝑍0 )) → 𝑍 ∈ (Unit‘𝑅))
3426, 7, 30, 33syl12anc 1474 . . . . . . 7 (𝜑𝑍 ∈ (Unit‘𝑅))
35 eqid 2771 . . . . . . . 8 (/r𝑅) = (/r𝑅)
361, 31, 35, 2dvrcan3 18899 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑍 ∈ (Unit‘𝑅)) → ((𝑋 · 𝑍)(/r𝑅)𝑍) = 𝑋)
3715, 5, 34, 36syl3anc 1476 . . . . . 6 (𝜑 → ((𝑋 · 𝑍)(/r𝑅)𝑍) = 𝑋)
3837adantr 466 . . . . 5 ((𝜑 ∧ (𝑋 · 𝑍) = (𝑌 · 𝑍)) → ((𝑋 · 𝑍)(/r𝑅)𝑍) = 𝑋)
391, 31, 35, 2dvrcan3 18899 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑍 ∈ (Unit‘𝑅)) → ((𝑌 · 𝑍)(/r𝑅)𝑍) = 𝑌)
4015, 6, 34, 39syl3anc 1476 . . . . . 6 (𝜑 → ((𝑌 · 𝑍)(/r𝑅)𝑍) = 𝑌)
4140adantr 466 . . . . 5 ((𝜑 ∧ (𝑋 · 𝑍) = (𝑌 · 𝑍)) → ((𝑌 · 𝑍)(/r𝑅)𝑍) = 𝑌)
4225, 38, 413eqtr3d 2813 . . . 4 ((𝜑 ∧ (𝑋 · 𝑍) = (𝑌 · 𝑍)) → 𝑋 = 𝑌)
4310pltne 17169 . . . . . . . 8 ((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋𝑌))
4443imp 393 . . . . . . 7 (((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝑌)
454, 5, 6, 9, 44syl31anc 1479 . . . . . 6 (𝜑𝑋𝑌)
4645adantr 466 . . . . 5 ((𝜑 ∧ (𝑋 · 𝑍) = (𝑌 · 𝑍)) → 𝑋𝑌)
4746neneqd 2948 . . . 4 ((𝜑 ∧ (𝑋 · 𝑍) = (𝑌 · 𝑍)) → ¬ 𝑋 = 𝑌)
4842, 47pm2.65da 800 . . 3 (𝜑 → ¬ (𝑋 · 𝑍) = (𝑌 · 𝑍))
4948neqned 2950 . 2 (𝜑 → (𝑋 · 𝑍) ≠ (𝑌 · 𝑍))
501, 2ringcl 18768 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑍𝐵) → (𝑋 · 𝑍) ∈ 𝐵)
5115, 5, 7, 50syl3anc 1476 . . 3 (𝜑 → (𝑋 · 𝑍) ∈ 𝐵)
521, 2ringcl 18768 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑍𝐵) → (𝑌 · 𝑍) ∈ 𝐵)
5315, 6, 7, 52syl3anc 1476 . . 3 (𝜑 → (𝑌 · 𝑍) ∈ 𝐵)
548, 10pltval 17167 . . 3 ((𝑅 ∈ oRing ∧ (𝑋 · 𝑍) ∈ 𝐵 ∧ (𝑌 · 𝑍) ∈ 𝐵) → ((𝑋 · 𝑍) < (𝑌 · 𝑍) ↔ ((𝑋 · 𝑍)(le‘𝑅)(𝑌 · 𝑍) ∧ (𝑋 · 𝑍) ≠ (𝑌 · 𝑍))))
554, 51, 53, 54syl3anc 1476 . 2 (𝜑 → ((𝑋 · 𝑍) < (𝑌 · 𝑍) ↔ ((𝑋 · 𝑍)(le‘𝑅)(𝑌 · 𝑍) ∧ (𝑋 · 𝑍) ≠ (𝑌 · 𝑍))))
5623, 49, 55mpbir2and 684 1 (𝜑 → (𝑋 · 𝑍) < (𝑌 · 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943   class class class wbr 4786  cfv 6031  (class class class)co 6792  Basecbs 16063  .rcmulr 16149  lecple 16155  0gc0g 16307  ltcplt 17148  Grpcgrp 17629  Ringcrg 18754  Unitcui 18846  /rcdvr 18889  DivRingcdr 18956  oRingcorng 30132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-tpos 7503  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-0g 16309  df-plt 17165  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-grp 17632  df-minusg 17633  df-sbg 17634  df-mgp 18697  df-ur 18709  df-ring 18756  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-invr 18879  df-dvr 18890  df-drng 18958  df-omnd 30036  df-ogrp 30037  df-orng 30134
This theorem is referenced by:  isarchiofld  30154
  Copyright terms: Public domain W3C validator