Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orngrmullt Structured version   Visualization version   GIF version

Theorem orngrmullt 30378
Description: In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018.)
Hypotheses
Ref Expression
ornglmullt.b 𝐵 = (Base‘𝑅)
ornglmullt.t · = (.r𝑅)
ornglmullt.0 0 = (0g𝑅)
ornglmullt.1 (𝜑𝑅 ∈ oRing)
ornglmullt.2 (𝜑𝑋𝐵)
ornglmullt.3 (𝜑𝑌𝐵)
ornglmullt.4 (𝜑𝑍𝐵)
ornglmullt.l < = (lt‘𝑅)
ornglmullt.d (𝜑𝑅 ∈ DivRing)
ornglmullt.5 (𝜑𝑋 < 𝑌)
ornglmullt.6 (𝜑0 < 𝑍)
Assertion
Ref Expression
orngrmullt (𝜑 → (𝑋 · 𝑍) < (𝑌 · 𝑍))

Proof of Theorem orngrmullt
StepHypRef Expression
1 ornglmullt.b . . 3 𝐵 = (Base‘𝑅)
2 ornglmullt.t . . 3 · = (.r𝑅)
3 ornglmullt.0 . . 3 0 = (0g𝑅)
4 ornglmullt.1 . . 3 (𝜑𝑅 ∈ oRing)
5 ornglmullt.2 . . 3 (𝜑𝑋𝐵)
6 ornglmullt.3 . . 3 (𝜑𝑌𝐵)
7 ornglmullt.4 . . 3 (𝜑𝑍𝐵)
8 eqid 2778 . . 3 (le‘𝑅) = (le‘𝑅)
9 ornglmullt.5 . . . 4 (𝜑𝑋 < 𝑌)
10 ornglmullt.l . . . . . 6 < = (lt‘𝑅)
118, 10pltle 17358 . . . . 5 ((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋(le‘𝑅)𝑌))
1211imp 397 . . . 4 (((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋(le‘𝑅)𝑌)
134, 5, 6, 9, 12syl31anc 1441 . . 3 (𝜑𝑋(le‘𝑅)𝑌)
14 orngring 30370 . . . . . 6 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
154, 14syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
16 ringgrp 18950 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
171, 3grpidcl 17848 . . . . 5 (𝑅 ∈ Grp → 0𝐵)
1815, 16, 173syl 18 . . . 4 (𝜑0𝐵)
19 ornglmullt.6 . . . 4 (𝜑0 < 𝑍)
208, 10pltle 17358 . . . . 5 ((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) → ( 0 < 𝑍0 (le‘𝑅)𝑍))
2120imp 397 . . . 4 (((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) ∧ 0 < 𝑍) → 0 (le‘𝑅)𝑍)
224, 18, 7, 19, 21syl31anc 1441 . . 3 (𝜑0 (le‘𝑅)𝑍)
231, 2, 3, 4, 5, 6, 7, 8, 13, 22orngrmulle 30376 . 2 (𝜑 → (𝑋 · 𝑍)(le‘𝑅)(𝑌 · 𝑍))
24 simpr 479 . . . . . 6 ((𝜑 ∧ (𝑋 · 𝑍) = (𝑌 · 𝑍)) → (𝑋 · 𝑍) = (𝑌 · 𝑍))
2524oveq1d 6939 . . . . 5 ((𝜑 ∧ (𝑋 · 𝑍) = (𝑌 · 𝑍)) → ((𝑋 · 𝑍)(/r𝑅)𝑍) = ((𝑌 · 𝑍)(/r𝑅)𝑍))
26 ornglmullt.d . . . . . . . 8 (𝜑𝑅 ∈ DivRing)
2710pltne 17359 . . . . . . . . . . 11 ((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) → ( 0 < 𝑍0𝑍))
2827imp 397 . . . . . . . . . 10 (((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) ∧ 0 < 𝑍) → 0𝑍)
294, 18, 7, 19, 28syl31anc 1441 . . . . . . . . 9 (𝜑0𝑍)
3029necomd 3024 . . . . . . . 8 (𝜑𝑍0 )
31 eqid 2778 . . . . . . . . . 10 (Unit‘𝑅) = (Unit‘𝑅)
321, 31, 3drngunit 19155 . . . . . . . . 9 (𝑅 ∈ DivRing → (𝑍 ∈ (Unit‘𝑅) ↔ (𝑍𝐵𝑍0 )))
3332biimpar 471 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ (𝑍𝐵𝑍0 )) → 𝑍 ∈ (Unit‘𝑅))
3426, 7, 30, 33syl12anc 827 . . . . . . 7 (𝜑𝑍 ∈ (Unit‘𝑅))
35 eqid 2778 . . . . . . . 8 (/r𝑅) = (/r𝑅)
361, 31, 35, 2dvrcan3 19090 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑍 ∈ (Unit‘𝑅)) → ((𝑋 · 𝑍)(/r𝑅)𝑍) = 𝑋)
3715, 5, 34, 36syl3anc 1439 . . . . . 6 (𝜑 → ((𝑋 · 𝑍)(/r𝑅)𝑍) = 𝑋)
3837adantr 474 . . . . 5 ((𝜑 ∧ (𝑋 · 𝑍) = (𝑌 · 𝑍)) → ((𝑋 · 𝑍)(/r𝑅)𝑍) = 𝑋)
391, 31, 35, 2dvrcan3 19090 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑍 ∈ (Unit‘𝑅)) → ((𝑌 · 𝑍)(/r𝑅)𝑍) = 𝑌)
4015, 6, 34, 39syl3anc 1439 . . . . . 6 (𝜑 → ((𝑌 · 𝑍)(/r𝑅)𝑍) = 𝑌)
4140adantr 474 . . . . 5 ((𝜑 ∧ (𝑋 · 𝑍) = (𝑌 · 𝑍)) → ((𝑌 · 𝑍)(/r𝑅)𝑍) = 𝑌)
4225, 38, 413eqtr3d 2822 . . . 4 ((𝜑 ∧ (𝑋 · 𝑍) = (𝑌 · 𝑍)) → 𝑋 = 𝑌)
4310pltne 17359 . . . . . . . 8 ((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋𝑌))
4443imp 397 . . . . . . 7 (((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝑌)
454, 5, 6, 9, 44syl31anc 1441 . . . . . 6 (𝜑𝑋𝑌)
4645adantr 474 . . . . 5 ((𝜑 ∧ (𝑋 · 𝑍) = (𝑌 · 𝑍)) → 𝑋𝑌)
4746neneqd 2974 . . . 4 ((𝜑 ∧ (𝑋 · 𝑍) = (𝑌 · 𝑍)) → ¬ 𝑋 = 𝑌)
4842, 47pm2.65da 807 . . 3 (𝜑 → ¬ (𝑋 · 𝑍) = (𝑌 · 𝑍))
4948neqned 2976 . 2 (𝜑 → (𝑋 · 𝑍) ≠ (𝑌 · 𝑍))
501, 2ringcl 18959 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑍𝐵) → (𝑋 · 𝑍) ∈ 𝐵)
5115, 5, 7, 50syl3anc 1439 . . 3 (𝜑 → (𝑋 · 𝑍) ∈ 𝐵)
521, 2ringcl 18959 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑍𝐵) → (𝑌 · 𝑍) ∈ 𝐵)
5315, 6, 7, 52syl3anc 1439 . . 3 (𝜑 → (𝑌 · 𝑍) ∈ 𝐵)
548, 10pltval 17357 . . 3 ((𝑅 ∈ oRing ∧ (𝑋 · 𝑍) ∈ 𝐵 ∧ (𝑌 · 𝑍) ∈ 𝐵) → ((𝑋 · 𝑍) < (𝑌 · 𝑍) ↔ ((𝑋 · 𝑍)(le‘𝑅)(𝑌 · 𝑍) ∧ (𝑋 · 𝑍) ≠ (𝑌 · 𝑍))))
554, 51, 53, 54syl3anc 1439 . 2 (𝜑 → ((𝑋 · 𝑍) < (𝑌 · 𝑍) ↔ ((𝑋 · 𝑍)(le‘𝑅)(𝑌 · 𝑍) ∧ (𝑋 · 𝑍) ≠ (𝑌 · 𝑍))))
5623, 49, 55mpbir2and 703 1 (𝜑 → (𝑋 · 𝑍) < (𝑌 · 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969   class class class wbr 4888  cfv 6137  (class class class)co 6924  Basecbs 16266  .rcmulr 16350  lecple 16356  0gc0g 16497  ltcplt 17338  Grpcgrp 17820  Ringcrg 18945  Unitcui 19037  /rcdvr 19080  DivRingcdr 19150  oRingcorng 30365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-tpos 7636  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-2 11443  df-3 11444  df-ndx 16269  df-slot 16270  df-base 16272  df-sets 16273  df-ress 16274  df-plusg 16362  df-mulr 16363  df-0g 16499  df-plt 17355  df-mgm 17639  df-sgrp 17681  df-mnd 17692  df-grp 17823  df-minusg 17824  df-sbg 17825  df-mgp 18888  df-ur 18900  df-ring 18947  df-oppr 19021  df-dvdsr 19039  df-unit 19040  df-invr 19070  df-dvr 19081  df-drng 19152  df-omnd 30269  df-ogrp 30270  df-orng 30367
This theorem is referenced by:  isarchiofld  30387
  Copyright terms: Public domain W3C validator