Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orngrmullt Structured version   Visualization version   GIF version

Theorem orngrmullt 33338
Description: In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018.)
Hypotheses
Ref Expression
ornglmullt.b 𝐵 = (Base‘𝑅)
ornglmullt.t · = (.r𝑅)
ornglmullt.0 0 = (0g𝑅)
ornglmullt.1 (𝜑𝑅 ∈ oRing)
ornglmullt.2 (𝜑𝑋𝐵)
ornglmullt.3 (𝜑𝑌𝐵)
ornglmullt.4 (𝜑𝑍𝐵)
ornglmullt.l < = (lt‘𝑅)
ornglmullt.d (𝜑𝑅 ∈ DivRing)
ornglmullt.5 (𝜑𝑋 < 𝑌)
ornglmullt.6 (𝜑0 < 𝑍)
Assertion
Ref Expression
orngrmullt (𝜑 → (𝑋 · 𝑍) < (𝑌 · 𝑍))

Proof of Theorem orngrmullt
StepHypRef Expression
1 ornglmullt.b . . 3 𝐵 = (Base‘𝑅)
2 ornglmullt.t . . 3 · = (.r𝑅)
3 ornglmullt.0 . . 3 0 = (0g𝑅)
4 ornglmullt.1 . . 3 (𝜑𝑅 ∈ oRing)
5 ornglmullt.2 . . 3 (𝜑𝑋𝐵)
6 ornglmullt.3 . . 3 (𝜑𝑌𝐵)
7 ornglmullt.4 . . 3 (𝜑𝑍𝐵)
8 eqid 2737 . . 3 (le‘𝑅) = (le‘𝑅)
9 ornglmullt.5 . . . 4 (𝜑𝑋 < 𝑌)
10 ornglmullt.l . . . . . 6 < = (lt‘𝑅)
118, 10pltle 18378 . . . . 5 ((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋(le‘𝑅)𝑌))
1211imp 406 . . . 4 (((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋(le‘𝑅)𝑌)
134, 5, 6, 9, 12syl31anc 1375 . . 3 (𝜑𝑋(le‘𝑅)𝑌)
14 orngring 33330 . . . . . 6 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
154, 14syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
16 ringgrp 20235 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
171, 3grpidcl 18983 . . . . 5 (𝑅 ∈ Grp → 0𝐵)
1815, 16, 173syl 18 . . . 4 (𝜑0𝐵)
19 ornglmullt.6 . . . 4 (𝜑0 < 𝑍)
208, 10pltle 18378 . . . . 5 ((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) → ( 0 < 𝑍0 (le‘𝑅)𝑍))
2120imp 406 . . . 4 (((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) ∧ 0 < 𝑍) → 0 (le‘𝑅)𝑍)
224, 18, 7, 19, 21syl31anc 1375 . . 3 (𝜑0 (le‘𝑅)𝑍)
231, 2, 3, 4, 5, 6, 7, 8, 13, 22orngrmulle 33336 . 2 (𝜑 → (𝑋 · 𝑍)(le‘𝑅)(𝑌 · 𝑍))
24 simpr 484 . . . . . 6 ((𝜑 ∧ (𝑋 · 𝑍) = (𝑌 · 𝑍)) → (𝑋 · 𝑍) = (𝑌 · 𝑍))
2524oveq1d 7446 . . . . 5 ((𝜑 ∧ (𝑋 · 𝑍) = (𝑌 · 𝑍)) → ((𝑋 · 𝑍)(/r𝑅)𝑍) = ((𝑌 · 𝑍)(/r𝑅)𝑍))
26 ornglmullt.d . . . . . . . 8 (𝜑𝑅 ∈ DivRing)
2710pltne 18379 . . . . . . . . . . 11 ((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) → ( 0 < 𝑍0𝑍))
2827imp 406 . . . . . . . . . 10 (((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) ∧ 0 < 𝑍) → 0𝑍)
294, 18, 7, 19, 28syl31anc 1375 . . . . . . . . 9 (𝜑0𝑍)
3029necomd 2996 . . . . . . . 8 (𝜑𝑍0 )
31 eqid 2737 . . . . . . . . . 10 (Unit‘𝑅) = (Unit‘𝑅)
321, 31, 3drngunit 20734 . . . . . . . . 9 (𝑅 ∈ DivRing → (𝑍 ∈ (Unit‘𝑅) ↔ (𝑍𝐵𝑍0 )))
3332biimpar 477 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ (𝑍𝐵𝑍0 )) → 𝑍 ∈ (Unit‘𝑅))
3426, 7, 30, 33syl12anc 837 . . . . . . 7 (𝜑𝑍 ∈ (Unit‘𝑅))
35 eqid 2737 . . . . . . . 8 (/r𝑅) = (/r𝑅)
361, 31, 35, 2dvrcan3 20410 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑍 ∈ (Unit‘𝑅)) → ((𝑋 · 𝑍)(/r𝑅)𝑍) = 𝑋)
3715, 5, 34, 36syl3anc 1373 . . . . . 6 (𝜑 → ((𝑋 · 𝑍)(/r𝑅)𝑍) = 𝑋)
3837adantr 480 . . . . 5 ((𝜑 ∧ (𝑋 · 𝑍) = (𝑌 · 𝑍)) → ((𝑋 · 𝑍)(/r𝑅)𝑍) = 𝑋)
391, 31, 35, 2dvrcan3 20410 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑍 ∈ (Unit‘𝑅)) → ((𝑌 · 𝑍)(/r𝑅)𝑍) = 𝑌)
4015, 6, 34, 39syl3anc 1373 . . . . . 6 (𝜑 → ((𝑌 · 𝑍)(/r𝑅)𝑍) = 𝑌)
4140adantr 480 . . . . 5 ((𝜑 ∧ (𝑋 · 𝑍) = (𝑌 · 𝑍)) → ((𝑌 · 𝑍)(/r𝑅)𝑍) = 𝑌)
4225, 38, 413eqtr3d 2785 . . . 4 ((𝜑 ∧ (𝑋 · 𝑍) = (𝑌 · 𝑍)) → 𝑋 = 𝑌)
4310pltne 18379 . . . . . . . 8 ((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋𝑌))
4443imp 406 . . . . . . 7 (((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝑌)
454, 5, 6, 9, 44syl31anc 1375 . . . . . 6 (𝜑𝑋𝑌)
4645adantr 480 . . . . 5 ((𝜑 ∧ (𝑋 · 𝑍) = (𝑌 · 𝑍)) → 𝑋𝑌)
4746neneqd 2945 . . . 4 ((𝜑 ∧ (𝑋 · 𝑍) = (𝑌 · 𝑍)) → ¬ 𝑋 = 𝑌)
4842, 47pm2.65da 817 . . 3 (𝜑 → ¬ (𝑋 · 𝑍) = (𝑌 · 𝑍))
4948neqned 2947 . 2 (𝜑 → (𝑋 · 𝑍) ≠ (𝑌 · 𝑍))
501, 2ringcl 20247 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑍𝐵) → (𝑋 · 𝑍) ∈ 𝐵)
5115, 5, 7, 50syl3anc 1373 . . 3 (𝜑 → (𝑋 · 𝑍) ∈ 𝐵)
521, 2ringcl 20247 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑍𝐵) → (𝑌 · 𝑍) ∈ 𝐵)
5315, 6, 7, 52syl3anc 1373 . . 3 (𝜑 → (𝑌 · 𝑍) ∈ 𝐵)
548, 10pltval 18377 . . 3 ((𝑅 ∈ oRing ∧ (𝑋 · 𝑍) ∈ 𝐵 ∧ (𝑌 · 𝑍) ∈ 𝐵) → ((𝑋 · 𝑍) < (𝑌 · 𝑍) ↔ ((𝑋 · 𝑍)(le‘𝑅)(𝑌 · 𝑍) ∧ (𝑋 · 𝑍) ≠ (𝑌 · 𝑍))))
554, 51, 53, 54syl3anc 1373 . 2 (𝜑 → ((𝑋 · 𝑍) < (𝑌 · 𝑍) ↔ ((𝑋 · 𝑍)(le‘𝑅)(𝑌 · 𝑍) ∧ (𝑋 · 𝑍) ≠ (𝑌 · 𝑍))))
5623, 49, 55mpbir2and 713 1 (𝜑 → (𝑋 · 𝑍) < (𝑌 · 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  .rcmulr 17298  lecple 17304  0gc0g 17484  ltcplt 18354  Grpcgrp 18951  Ringcrg 20230  Unitcui 20355  /rcdvr 20400  DivRingcdr 20729  oRingcorng 33325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-0g 17486  df-plt 18375  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-drng 20731  df-omnd 33076  df-ogrp 33077  df-orng 33327
This theorem is referenced by:  isarchiofld  33347
  Copyright terms: Public domain W3C validator