Step | Hyp | Ref
| Expression |
1 | | ornglmullt.b |
. . 3
β’ π΅ = (Baseβπ
) |
2 | | ornglmullt.t |
. . 3
β’ Β· =
(.rβπ
) |
3 | | ornglmullt.0 |
. . 3
β’ 0 =
(0gβπ
) |
4 | | ornglmullt.1 |
. . 3
β’ (π β π
β oRing) |
5 | | ornglmullt.2 |
. . 3
β’ (π β π β π΅) |
6 | | ornglmullt.3 |
. . 3
β’ (π β π β π΅) |
7 | | ornglmullt.4 |
. . 3
β’ (π β π β π΅) |
8 | | eqid 2732 |
. . 3
β’
(leβπ
) =
(leβπ
) |
9 | | ornglmullt.5 |
. . . 4
β’ (π β π < π) |
10 | | ornglmullt.l |
. . . . . 6
β’ < =
(ltβπ
) |
11 | 8, 10 | pltle 18282 |
. . . . 5
β’ ((π
β oRing β§ π β π΅ β§ π β π΅) β (π < π β π(leβπ
)π)) |
12 | 11 | imp 407 |
. . . 4
β’ (((π
β oRing β§ π β π΅ β§ π β π΅) β§ π < π) β π(leβπ
)π) |
13 | 4, 5, 6, 9, 12 | syl31anc 1373 |
. . 3
β’ (π β π(leβπ
)π) |
14 | | orngring 32406 |
. . . . . 6
β’ (π
β oRing β π
β Ring) |
15 | 4, 14 | syl 17 |
. . . . 5
β’ (π β π
β Ring) |
16 | | ringgrp 20054 |
. . . . 5
β’ (π
β Ring β π
β Grp) |
17 | 1, 3 | grpidcl 18846 |
. . . . 5
β’ (π
β Grp β 0 β π΅) |
18 | 15, 16, 17 | 3syl 18 |
. . . 4
β’ (π β 0 β π΅) |
19 | | ornglmullt.6 |
. . . 4
β’ (π β 0 < π) |
20 | 8, 10 | pltle 18282 |
. . . . 5
β’ ((π
β oRing β§ 0 β π΅ β§ π β π΅) β ( 0 < π β 0 (leβπ
)π)) |
21 | 20 | imp 407 |
. . . 4
β’ (((π
β oRing β§ 0 β π΅ β§ π β π΅) β§ 0 < π) β 0 (leβπ
)π) |
22 | 4, 18, 7, 19, 21 | syl31anc 1373 |
. . 3
β’ (π β 0 (leβπ
)π) |
23 | 1, 2, 3, 4, 5, 6, 7, 8, 13, 22 | ornglmulle 32411 |
. 2
β’ (π β (π Β· π)(leβπ
)(π Β· π)) |
24 | | simpr 485 |
. . . . . 6
β’ ((π β§ (π Β· π) = (π Β· π)) β (π Β· π) = (π Β· π)) |
25 | 24 | oveq2d 7421 |
. . . . 5
β’ ((π β§ (π Β· π) = (π Β· π)) β (((invrβπ
)βπ) Β· (π Β· π)) = (((invrβπ
)βπ) Β· (π Β· π))) |
26 | | ornglmullt.d |
. . . . . . . . . 10
β’ (π β π
β DivRing) |
27 | 10 | pltne 18283 |
. . . . . . . . . . . . 13
β’ ((π
β oRing β§ 0 β π΅ β§ π β π΅) β ( 0 < π β 0 β π)) |
28 | 27 | imp 407 |
. . . . . . . . . . . 12
β’ (((π
β oRing β§ 0 β π΅ β§ π β π΅) β§ 0 < π) β 0 β π) |
29 | 4, 18, 7, 19, 28 | syl31anc 1373 |
. . . . . . . . . . 11
β’ (π β 0 β π) |
30 | 29 | necomd 2996 |
. . . . . . . . . 10
β’ (π β π β 0 ) |
31 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(Unitβπ
) =
(Unitβπ
) |
32 | 1, 31, 3 | drngunit 20312 |
. . . . . . . . . . 11
β’ (π
β DivRing β (π β (Unitβπ
) β (π β π΅ β§ π β 0 ))) |
33 | 32 | biimpar 478 |
. . . . . . . . . 10
β’ ((π
β DivRing β§ (π β π΅ β§ π β 0 )) β π β (Unitβπ
)) |
34 | 26, 7, 30, 33 | syl12anc 835 |
. . . . . . . . 9
β’ (π β π β (Unitβπ
)) |
35 | | eqid 2732 |
. . . . . . . . . 10
β’
(invrβπ
) = (invrβπ
) |
36 | | eqid 2732 |
. . . . . . . . . 10
β’
(1rβπ
) = (1rβπ
) |
37 | 31, 35, 2, 36 | unitlinv 20199 |
. . . . . . . . 9
β’ ((π
β Ring β§ π β (Unitβπ
)) β
(((invrβπ
)βπ) Β· π) = (1rβπ
)) |
38 | 15, 34, 37 | syl2anc 584 |
. . . . . . . 8
β’ (π β
(((invrβπ
)βπ) Β· π) = (1rβπ
)) |
39 | 38 | oveq1d 7420 |
. . . . . . 7
β’ (π β
((((invrβπ
)βπ) Β· π) Β· π) = ((1rβπ
) Β· π)) |
40 | 31, 35, 1 | ringinvcl 20198 |
. . . . . . . . 9
β’ ((π
β Ring β§ π β (Unitβπ
)) β
((invrβπ
)βπ) β π΅) |
41 | 15, 34, 40 | syl2anc 584 |
. . . . . . . 8
β’ (π β
((invrβπ
)βπ) β π΅) |
42 | 1, 2 | ringass 20069 |
. . . . . . . 8
β’ ((π
β Ring β§
(((invrβπ
)βπ) β π΅ β§ π β π΅ β§ π β π΅)) β ((((invrβπ
)βπ) Β· π) Β· π) = (((invrβπ
)βπ) Β· (π Β· π))) |
43 | 15, 41, 7, 5, 42 | syl13anc 1372 |
. . . . . . 7
β’ (π β
((((invrβπ
)βπ) Β· π) Β· π) = (((invrβπ
)βπ) Β· (π Β· π))) |
44 | 1, 2, 36 | ringlidm 20079 |
. . . . . . . 8
β’ ((π
β Ring β§ π β π΅) β ((1rβπ
) Β· π) = π) |
45 | 15, 5, 44 | syl2anc 584 |
. . . . . . 7
β’ (π β
((1rβπ
)
Β·
π) = π) |
46 | 39, 43, 45 | 3eqtr3d 2780 |
. . . . . 6
β’ (π β
(((invrβπ
)βπ) Β· (π Β· π)) = π) |
47 | 46 | adantr 481 |
. . . . 5
β’ ((π β§ (π Β· π) = (π Β· π)) β (((invrβπ
)βπ) Β· (π Β· π)) = π) |
48 | 38 | oveq1d 7420 |
. . . . . . 7
β’ (π β
((((invrβπ
)βπ) Β· π) Β· π) = ((1rβπ
) Β· π)) |
49 | 1, 2 | ringass 20069 |
. . . . . . . 8
β’ ((π
β Ring β§
(((invrβπ
)βπ) β π΅ β§ π β π΅ β§ π β π΅)) β ((((invrβπ
)βπ) Β· π) Β· π) = (((invrβπ
)βπ) Β· (π Β· π))) |
50 | 15, 41, 7, 6, 49 | syl13anc 1372 |
. . . . . . 7
β’ (π β
((((invrβπ
)βπ) Β· π) Β· π) = (((invrβπ
)βπ) Β· (π Β· π))) |
51 | 1, 2, 36 | ringlidm 20079 |
. . . . . . . 8
β’ ((π
β Ring β§ π β π΅) β ((1rβπ
) Β· π) = π) |
52 | 15, 6, 51 | syl2anc 584 |
. . . . . . 7
β’ (π β
((1rβπ
)
Β·
π) = π) |
53 | 48, 50, 52 | 3eqtr3d 2780 |
. . . . . 6
β’ (π β
(((invrβπ
)βπ) Β· (π Β· π)) = π) |
54 | 53 | adantr 481 |
. . . . 5
β’ ((π β§ (π Β· π) = (π Β· π)) β (((invrβπ
)βπ) Β· (π Β· π)) = π) |
55 | 25, 47, 54 | 3eqtr3d 2780 |
. . . 4
β’ ((π β§ (π Β· π) = (π Β· π)) β π = π) |
56 | 10 | pltne 18283 |
. . . . . . . 8
β’ ((π
β oRing β§ π β π΅ β§ π β π΅) β (π < π β π β π)) |
57 | 56 | imp 407 |
. . . . . . 7
β’ (((π
β oRing β§ π β π΅ β§ π β π΅) β§ π < π) β π β π) |
58 | 4, 5, 6, 9, 57 | syl31anc 1373 |
. . . . . 6
β’ (π β π β π) |
59 | 58 | adantr 481 |
. . . . 5
β’ ((π β§ (π Β· π) = (π Β· π)) β π β π) |
60 | 59 | neneqd 2945 |
. . . 4
β’ ((π β§ (π Β· π) = (π Β· π)) β Β¬ π = π) |
61 | 55, 60 | pm2.65da 815 |
. . 3
β’ (π β Β¬ (π Β· π) = (π Β· π)) |
62 | 61 | neqned 2947 |
. 2
β’ (π β (π Β· π) β (π Β· π)) |
63 | 1, 2 | ringcl 20066 |
. . . 4
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (π Β· π) β π΅) |
64 | 15, 7, 5, 63 | syl3anc 1371 |
. . 3
β’ (π β (π Β· π) β π΅) |
65 | 1, 2 | ringcl 20066 |
. . . 4
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (π Β· π) β π΅) |
66 | 15, 7, 6, 65 | syl3anc 1371 |
. . 3
β’ (π β (π Β· π) β π΅) |
67 | 8, 10 | pltval 18281 |
. . 3
β’ ((π
β oRing β§ (π Β· π) β π΅ β§ (π Β· π) β π΅) β ((π Β· π) < (π Β· π) β ((π Β· π)(leβπ
)(π Β· π) β§ (π Β· π) β (π Β· π)))) |
68 | 4, 64, 66, 67 | syl3anc 1371 |
. 2
β’ (π β ((π Β· π) < (π Β· π) β ((π Β· π)(leβπ
)(π Β· π) β§ (π Β· π) β (π Β· π)))) |
69 | 23, 62, 68 | mpbir2and 711 |
1
β’ (π β (π Β· π) < (π Β· π)) |