Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ornglmullt Structured version   Visualization version   GIF version

Theorem ornglmullt 33283
Description: In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018.)
Hypotheses
Ref Expression
ornglmullt.b 𝐵 = (Base‘𝑅)
ornglmullt.t · = (.r𝑅)
ornglmullt.0 0 = (0g𝑅)
ornglmullt.1 (𝜑𝑅 ∈ oRing)
ornglmullt.2 (𝜑𝑋𝐵)
ornglmullt.3 (𝜑𝑌𝐵)
ornglmullt.4 (𝜑𝑍𝐵)
ornglmullt.l < = (lt‘𝑅)
ornglmullt.d (𝜑𝑅 ∈ DivRing)
ornglmullt.5 (𝜑𝑋 < 𝑌)
ornglmullt.6 (𝜑0 < 𝑍)
Assertion
Ref Expression
ornglmullt (𝜑 → (𝑍 · 𝑋) < (𝑍 · 𝑌))

Proof of Theorem ornglmullt
StepHypRef Expression
1 ornglmullt.b . . 3 𝐵 = (Base‘𝑅)
2 ornglmullt.t . . 3 · = (.r𝑅)
3 ornglmullt.0 . . 3 0 = (0g𝑅)
4 ornglmullt.1 . . 3 (𝜑𝑅 ∈ oRing)
5 ornglmullt.2 . . 3 (𝜑𝑋𝐵)
6 ornglmullt.3 . . 3 (𝜑𝑌𝐵)
7 ornglmullt.4 . . 3 (𝜑𝑍𝐵)
8 eqid 2734 . . 3 (le‘𝑅) = (le‘𝑅)
9 ornglmullt.5 . . . 4 (𝜑𝑋 < 𝑌)
10 ornglmullt.l . . . . . 6 < = (lt‘𝑅)
118, 10pltle 18352 . . . . 5 ((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋(le‘𝑅)𝑌))
1211imp 406 . . . 4 (((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋(le‘𝑅)𝑌)
134, 5, 6, 9, 12syl31anc 1374 . . 3 (𝜑𝑋(le‘𝑅)𝑌)
14 orngring 33276 . . . . . 6 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
154, 14syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
16 ringgrp 20208 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
171, 3grpidcl 18957 . . . . 5 (𝑅 ∈ Grp → 0𝐵)
1815, 16, 173syl 18 . . . 4 (𝜑0𝐵)
19 ornglmullt.6 . . . 4 (𝜑0 < 𝑍)
208, 10pltle 18352 . . . . 5 ((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) → ( 0 < 𝑍0 (le‘𝑅)𝑍))
2120imp 406 . . . 4 (((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) ∧ 0 < 𝑍) → 0 (le‘𝑅)𝑍)
224, 18, 7, 19, 21syl31anc 1374 . . 3 (𝜑0 (le‘𝑅)𝑍)
231, 2, 3, 4, 5, 6, 7, 8, 13, 22ornglmulle 33281 . 2 (𝜑 → (𝑍 · 𝑋)(le‘𝑅)(𝑍 · 𝑌))
24 simpr 484 . . . . . 6 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → (𝑍 · 𝑋) = (𝑍 · 𝑌))
2524oveq2d 7430 . . . . 5 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)))
26 ornglmullt.d . . . . . . . . . 10 (𝜑𝑅 ∈ DivRing)
2710pltne 18353 . . . . . . . . . . . . 13 ((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) → ( 0 < 𝑍0𝑍))
2827imp 406 . . . . . . . . . . . 12 (((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) ∧ 0 < 𝑍) → 0𝑍)
294, 18, 7, 19, 28syl31anc 1374 . . . . . . . . . . 11 (𝜑0𝑍)
3029necomd 2986 . . . . . . . . . 10 (𝜑𝑍0 )
31 eqid 2734 . . . . . . . . . . . 12 (Unit‘𝑅) = (Unit‘𝑅)
321, 31, 3drngunit 20707 . . . . . . . . . . 11 (𝑅 ∈ DivRing → (𝑍 ∈ (Unit‘𝑅) ↔ (𝑍𝐵𝑍0 )))
3332biimpar 477 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ (𝑍𝐵𝑍0 )) → 𝑍 ∈ (Unit‘𝑅))
3426, 7, 30, 33syl12anc 836 . . . . . . . . 9 (𝜑𝑍 ∈ (Unit‘𝑅))
35 eqid 2734 . . . . . . . . . 10 (invr𝑅) = (invr𝑅)
36 eqid 2734 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
3731, 35, 2, 36unitlinv 20366 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑍 ∈ (Unit‘𝑅)) → (((invr𝑅)‘𝑍) · 𝑍) = (1r𝑅))
3815, 34, 37syl2anc 584 . . . . . . . 8 (𝜑 → (((invr𝑅)‘𝑍) · 𝑍) = (1r𝑅))
3938oveq1d 7429 . . . . . . 7 (𝜑 → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑋) = ((1r𝑅) · 𝑋))
4031, 35, 1ringinvcl 20365 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑍 ∈ (Unit‘𝑅)) → ((invr𝑅)‘𝑍) ∈ 𝐵)
4115, 34, 40syl2anc 584 . . . . . . . 8 (𝜑 → ((invr𝑅)‘𝑍) ∈ 𝐵)
421, 2ringass 20223 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘𝑍) ∈ 𝐵𝑍𝐵𝑋𝐵)) → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑋) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)))
4315, 41, 7, 5, 42syl13anc 1373 . . . . . . 7 (𝜑 → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑋) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)))
441, 2, 36ringlidm 20239 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((1r𝑅) · 𝑋) = 𝑋)
4515, 5, 44syl2anc 584 . . . . . . 7 (𝜑 → ((1r𝑅) · 𝑋) = 𝑋)
4639, 43, 453eqtr3d 2777 . . . . . 6 (𝜑 → (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)) = 𝑋)
4746adantr 480 . . . . 5 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)) = 𝑋)
4838oveq1d 7429 . . . . . . 7 (𝜑 → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑌) = ((1r𝑅) · 𝑌))
491, 2ringass 20223 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘𝑍) ∈ 𝐵𝑍𝐵𝑌𝐵)) → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑌) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)))
5015, 41, 7, 6, 49syl13anc 1373 . . . . . . 7 (𝜑 → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑌) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)))
511, 2, 36ringlidm 20239 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ((1r𝑅) · 𝑌) = 𝑌)
5215, 6, 51syl2anc 584 . . . . . . 7 (𝜑 → ((1r𝑅) · 𝑌) = 𝑌)
5348, 50, 523eqtr3d 2777 . . . . . 6 (𝜑 → (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)) = 𝑌)
5453adantr 480 . . . . 5 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)) = 𝑌)
5525, 47, 543eqtr3d 2777 . . . 4 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → 𝑋 = 𝑌)
5610pltne 18353 . . . . . . . 8 ((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋𝑌))
5756imp 406 . . . . . . 7 (((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝑌)
584, 5, 6, 9, 57syl31anc 1374 . . . . . 6 (𝜑𝑋𝑌)
5958adantr 480 . . . . 5 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → 𝑋𝑌)
6059neneqd 2936 . . . 4 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → ¬ 𝑋 = 𝑌)
6155, 60pm2.65da 816 . . 3 (𝜑 → ¬ (𝑍 · 𝑋) = (𝑍 · 𝑌))
6261neqned 2938 . 2 (𝜑 → (𝑍 · 𝑋) ≠ (𝑍 · 𝑌))
631, 2ringcl 20220 . . . 4 ((𝑅 ∈ Ring ∧ 𝑍𝐵𝑋𝐵) → (𝑍 · 𝑋) ∈ 𝐵)
6415, 7, 5, 63syl3anc 1372 . . 3 (𝜑 → (𝑍 · 𝑋) ∈ 𝐵)
651, 2ringcl 20220 . . . 4 ((𝑅 ∈ Ring ∧ 𝑍𝐵𝑌𝐵) → (𝑍 · 𝑌) ∈ 𝐵)
6615, 7, 6, 65syl3anc 1372 . . 3 (𝜑 → (𝑍 · 𝑌) ∈ 𝐵)
678, 10pltval 18351 . . 3 ((𝑅 ∈ oRing ∧ (𝑍 · 𝑋) ∈ 𝐵 ∧ (𝑍 · 𝑌) ∈ 𝐵) → ((𝑍 · 𝑋) < (𝑍 · 𝑌) ↔ ((𝑍 · 𝑋)(le‘𝑅)(𝑍 · 𝑌) ∧ (𝑍 · 𝑋) ≠ (𝑍 · 𝑌))))
684, 64, 66, 67syl3anc 1372 . 2 (𝜑 → ((𝑍 · 𝑋) < (𝑍 · 𝑌) ↔ ((𝑍 · 𝑋)(le‘𝑅)(𝑍 · 𝑌) ∧ (𝑍 · 𝑋) ≠ (𝑍 · 𝑌))))
6923, 62, 68mpbir2and 713 1 (𝜑 → (𝑍 · 𝑋) < (𝑍 · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931   class class class wbr 5125  cfv 6542  (class class class)co 7414  Basecbs 17230  .rcmulr 17278  lecple 17284  0gc0g 17460  ltcplt 18329  Grpcgrp 18925  1rcur 20151  Ringcrg 20203  Unitcui 20328  invrcinvr 20360  DivRingcdr 20702  oRingcorng 33271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-tpos 8234  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-3 12313  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17257  df-plusg 17290  df-mulr 17291  df-0g 17462  df-plt 18349  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-grp 18928  df-minusg 18929  df-sbg 18930  df-cmn 19773  df-abl 19774  df-mgp 20111  df-rng 20123  df-ur 20152  df-ring 20205  df-oppr 20307  df-dvdsr 20330  df-unit 20331  df-invr 20361  df-drng 20704  df-omnd 33022  df-ogrp 33023  df-orng 33273
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator