Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ornglmullt Structured version   Visualization version   GIF version

Theorem ornglmullt 30559
Description: In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018.)
Hypotheses
Ref Expression
ornglmullt.b 𝐵 = (Base‘𝑅)
ornglmullt.t · = (.r𝑅)
ornglmullt.0 0 = (0g𝑅)
ornglmullt.1 (𝜑𝑅 ∈ oRing)
ornglmullt.2 (𝜑𝑋𝐵)
ornglmullt.3 (𝜑𝑌𝐵)
ornglmullt.4 (𝜑𝑍𝐵)
ornglmullt.l < = (lt‘𝑅)
ornglmullt.d (𝜑𝑅 ∈ DivRing)
ornglmullt.5 (𝜑𝑋 < 𝑌)
ornglmullt.6 (𝜑0 < 𝑍)
Assertion
Ref Expression
ornglmullt (𝜑 → (𝑍 · 𝑋) < (𝑍 · 𝑌))

Proof of Theorem ornglmullt
StepHypRef Expression
1 ornglmullt.b . . 3 𝐵 = (Base‘𝑅)
2 ornglmullt.t . . 3 · = (.r𝑅)
3 ornglmullt.0 . . 3 0 = (0g𝑅)
4 ornglmullt.1 . . 3 (𝜑𝑅 ∈ oRing)
5 ornglmullt.2 . . 3 (𝜑𝑋𝐵)
6 ornglmullt.3 . . 3 (𝜑𝑌𝐵)
7 ornglmullt.4 . . 3 (𝜑𝑍𝐵)
8 eqid 2772 . . 3 (le‘𝑅) = (le‘𝑅)
9 ornglmullt.5 . . . 4 (𝜑𝑋 < 𝑌)
10 ornglmullt.l . . . . . 6 < = (lt‘𝑅)
118, 10pltle 17423 . . . . 5 ((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋(le‘𝑅)𝑌))
1211imp 398 . . . 4 (((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋(le‘𝑅)𝑌)
134, 5, 6, 9, 12syl31anc 1353 . . 3 (𝜑𝑋(le‘𝑅)𝑌)
14 orngring 30552 . . . . . 6 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
154, 14syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
16 ringgrp 19019 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
171, 3grpidcl 17913 . . . . 5 (𝑅 ∈ Grp → 0𝐵)
1815, 16, 173syl 18 . . . 4 (𝜑0𝐵)
19 ornglmullt.6 . . . 4 (𝜑0 < 𝑍)
208, 10pltle 17423 . . . . 5 ((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) → ( 0 < 𝑍0 (le‘𝑅)𝑍))
2120imp 398 . . . 4 (((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) ∧ 0 < 𝑍) → 0 (le‘𝑅)𝑍)
224, 18, 7, 19, 21syl31anc 1353 . . 3 (𝜑0 (le‘𝑅)𝑍)
231, 2, 3, 4, 5, 6, 7, 8, 13, 22ornglmulle 30557 . 2 (𝜑 → (𝑍 · 𝑋)(le‘𝑅)(𝑍 · 𝑌))
24 simpr 477 . . . . . 6 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → (𝑍 · 𝑋) = (𝑍 · 𝑌))
2524oveq2d 6986 . . . . 5 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)))
26 ornglmullt.d . . . . . . . . . 10 (𝜑𝑅 ∈ DivRing)
2710pltne 17424 . . . . . . . . . . . . 13 ((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) → ( 0 < 𝑍0𝑍))
2827imp 398 . . . . . . . . . . . 12 (((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) ∧ 0 < 𝑍) → 0𝑍)
294, 18, 7, 19, 28syl31anc 1353 . . . . . . . . . . 11 (𝜑0𝑍)
3029necomd 3016 . . . . . . . . . 10 (𝜑𝑍0 )
31 eqid 2772 . . . . . . . . . . . 12 (Unit‘𝑅) = (Unit‘𝑅)
321, 31, 3drngunit 19224 . . . . . . . . . . 11 (𝑅 ∈ DivRing → (𝑍 ∈ (Unit‘𝑅) ↔ (𝑍𝐵𝑍0 )))
3332biimpar 470 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ (𝑍𝐵𝑍0 )) → 𝑍 ∈ (Unit‘𝑅))
3426, 7, 30, 33syl12anc 824 . . . . . . . . 9 (𝜑𝑍 ∈ (Unit‘𝑅))
35 eqid 2772 . . . . . . . . . 10 (invr𝑅) = (invr𝑅)
36 eqid 2772 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
3731, 35, 2, 36unitlinv 19144 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑍 ∈ (Unit‘𝑅)) → (((invr𝑅)‘𝑍) · 𝑍) = (1r𝑅))
3815, 34, 37syl2anc 576 . . . . . . . 8 (𝜑 → (((invr𝑅)‘𝑍) · 𝑍) = (1r𝑅))
3938oveq1d 6985 . . . . . . 7 (𝜑 → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑋) = ((1r𝑅) · 𝑋))
4031, 35, 1ringinvcl 19143 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑍 ∈ (Unit‘𝑅)) → ((invr𝑅)‘𝑍) ∈ 𝐵)
4115, 34, 40syl2anc 576 . . . . . . . 8 (𝜑 → ((invr𝑅)‘𝑍) ∈ 𝐵)
421, 2ringass 19031 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘𝑍) ∈ 𝐵𝑍𝐵𝑋𝐵)) → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑋) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)))
4315, 41, 7, 5, 42syl13anc 1352 . . . . . . 7 (𝜑 → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑋) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)))
441, 2, 36ringlidm 19038 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((1r𝑅) · 𝑋) = 𝑋)
4515, 5, 44syl2anc 576 . . . . . . 7 (𝜑 → ((1r𝑅) · 𝑋) = 𝑋)
4639, 43, 453eqtr3d 2816 . . . . . 6 (𝜑 → (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)) = 𝑋)
4746adantr 473 . . . . 5 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)) = 𝑋)
4838oveq1d 6985 . . . . . . 7 (𝜑 → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑌) = ((1r𝑅) · 𝑌))
491, 2ringass 19031 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘𝑍) ∈ 𝐵𝑍𝐵𝑌𝐵)) → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑌) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)))
5015, 41, 7, 6, 49syl13anc 1352 . . . . . . 7 (𝜑 → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑌) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)))
511, 2, 36ringlidm 19038 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ((1r𝑅) · 𝑌) = 𝑌)
5215, 6, 51syl2anc 576 . . . . . . 7 (𝜑 → ((1r𝑅) · 𝑌) = 𝑌)
5348, 50, 523eqtr3d 2816 . . . . . 6 (𝜑 → (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)) = 𝑌)
5453adantr 473 . . . . 5 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)) = 𝑌)
5525, 47, 543eqtr3d 2816 . . . 4 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → 𝑋 = 𝑌)
5610pltne 17424 . . . . . . . 8 ((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋𝑌))
5756imp 398 . . . . . . 7 (((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝑌)
584, 5, 6, 9, 57syl31anc 1353 . . . . . 6 (𝜑𝑋𝑌)
5958adantr 473 . . . . 5 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → 𝑋𝑌)
6059neneqd 2966 . . . 4 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → ¬ 𝑋 = 𝑌)
6155, 60pm2.65da 804 . . 3 (𝜑 → ¬ (𝑍 · 𝑋) = (𝑍 · 𝑌))
6261neqned 2968 . 2 (𝜑 → (𝑍 · 𝑋) ≠ (𝑍 · 𝑌))
631, 2ringcl 19028 . . . 4 ((𝑅 ∈ Ring ∧ 𝑍𝐵𝑋𝐵) → (𝑍 · 𝑋) ∈ 𝐵)
6415, 7, 5, 63syl3anc 1351 . . 3 (𝜑 → (𝑍 · 𝑋) ∈ 𝐵)
651, 2ringcl 19028 . . . 4 ((𝑅 ∈ Ring ∧ 𝑍𝐵𝑌𝐵) → (𝑍 · 𝑌) ∈ 𝐵)
6615, 7, 6, 65syl3anc 1351 . . 3 (𝜑 → (𝑍 · 𝑌) ∈ 𝐵)
678, 10pltval 17422 . . 3 ((𝑅 ∈ oRing ∧ (𝑍 · 𝑋) ∈ 𝐵 ∧ (𝑍 · 𝑌) ∈ 𝐵) → ((𝑍 · 𝑋) < (𝑍 · 𝑌) ↔ ((𝑍 · 𝑋)(le‘𝑅)(𝑍 · 𝑌) ∧ (𝑍 · 𝑋) ≠ (𝑍 · 𝑌))))
684, 64, 66, 67syl3anc 1351 . 2 (𝜑 → ((𝑍 · 𝑋) < (𝑍 · 𝑌) ↔ ((𝑍 · 𝑋)(le‘𝑅)(𝑍 · 𝑌) ∧ (𝑍 · 𝑋) ≠ (𝑍 · 𝑌))))
6923, 62, 68mpbir2and 700 1 (𝜑 → (𝑍 · 𝑋) < (𝑍 · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2961   class class class wbr 4923  cfv 6182  (class class class)co 6970  Basecbs 16333  .rcmulr 16416  lecple 16422  0gc0g 16563  ltcplt 17403  Grpcgrp 17885  1rcur 18968  Ringcrg 19014  Unitcui 19106  invrcinvr 19138  DivRingcdr 19219  oRingcorng 30547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7495  df-2nd 7496  df-tpos 7689  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-er 8083  df-en 8301  df-dom 8302  df-sdom 8303  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-nn 11434  df-2 11497  df-3 11498  df-ndx 16336  df-slot 16337  df-base 16339  df-sets 16340  df-ress 16341  df-plusg 16428  df-mulr 16429  df-0g 16565  df-plt 17420  df-mgm 17704  df-sgrp 17746  df-mnd 17757  df-grp 17888  df-minusg 17889  df-sbg 17890  df-mgp 18957  df-ur 18969  df-ring 19016  df-oppr 19090  df-dvdsr 19108  df-unit 19109  df-invr 19139  df-drng 19221  df-omnd 30418  df-ogrp 30419  df-orng 30549
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator