Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ornglmullt Structured version   Visualization version   GIF version

Theorem ornglmullt 33285
Description: In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018.)
Hypotheses
Ref Expression
ornglmullt.b 𝐵 = (Base‘𝑅)
ornglmullt.t · = (.r𝑅)
ornglmullt.0 0 = (0g𝑅)
ornglmullt.1 (𝜑𝑅 ∈ oRing)
ornglmullt.2 (𝜑𝑋𝐵)
ornglmullt.3 (𝜑𝑌𝐵)
ornglmullt.4 (𝜑𝑍𝐵)
ornglmullt.l < = (lt‘𝑅)
ornglmullt.d (𝜑𝑅 ∈ DivRing)
ornglmullt.5 (𝜑𝑋 < 𝑌)
ornglmullt.6 (𝜑0 < 𝑍)
Assertion
Ref Expression
ornglmullt (𝜑 → (𝑍 · 𝑋) < (𝑍 · 𝑌))

Proof of Theorem ornglmullt
StepHypRef Expression
1 ornglmullt.b . . 3 𝐵 = (Base‘𝑅)
2 ornglmullt.t . . 3 · = (.r𝑅)
3 ornglmullt.0 . . 3 0 = (0g𝑅)
4 ornglmullt.1 . . 3 (𝜑𝑅 ∈ oRing)
5 ornglmullt.2 . . 3 (𝜑𝑋𝐵)
6 ornglmullt.3 . . 3 (𝜑𝑌𝐵)
7 ornglmullt.4 . . 3 (𝜑𝑍𝐵)
8 eqid 2729 . . 3 (le‘𝑅) = (le‘𝑅)
9 ornglmullt.5 . . . 4 (𝜑𝑋 < 𝑌)
10 ornglmullt.l . . . . . 6 < = (lt‘𝑅)
118, 10pltle 18292 . . . . 5 ((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋(le‘𝑅)𝑌))
1211imp 406 . . . 4 (((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋(le‘𝑅)𝑌)
134, 5, 6, 9, 12syl31anc 1375 . . 3 (𝜑𝑋(le‘𝑅)𝑌)
14 orngring 33278 . . . . . 6 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
154, 14syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
16 ringgrp 20147 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
171, 3grpidcl 18897 . . . . 5 (𝑅 ∈ Grp → 0𝐵)
1815, 16, 173syl 18 . . . 4 (𝜑0𝐵)
19 ornglmullt.6 . . . 4 (𝜑0 < 𝑍)
208, 10pltle 18292 . . . . 5 ((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) → ( 0 < 𝑍0 (le‘𝑅)𝑍))
2120imp 406 . . . 4 (((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) ∧ 0 < 𝑍) → 0 (le‘𝑅)𝑍)
224, 18, 7, 19, 21syl31anc 1375 . . 3 (𝜑0 (le‘𝑅)𝑍)
231, 2, 3, 4, 5, 6, 7, 8, 13, 22ornglmulle 33283 . 2 (𝜑 → (𝑍 · 𝑋)(le‘𝑅)(𝑍 · 𝑌))
24 simpr 484 . . . . . 6 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → (𝑍 · 𝑋) = (𝑍 · 𝑌))
2524oveq2d 7403 . . . . 5 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)))
26 ornglmullt.d . . . . . . . . . 10 (𝜑𝑅 ∈ DivRing)
2710pltne 18293 . . . . . . . . . . . . 13 ((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) → ( 0 < 𝑍0𝑍))
2827imp 406 . . . . . . . . . . . 12 (((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) ∧ 0 < 𝑍) → 0𝑍)
294, 18, 7, 19, 28syl31anc 1375 . . . . . . . . . . 11 (𝜑0𝑍)
3029necomd 2980 . . . . . . . . . 10 (𝜑𝑍0 )
31 eqid 2729 . . . . . . . . . . . 12 (Unit‘𝑅) = (Unit‘𝑅)
321, 31, 3drngunit 20643 . . . . . . . . . . 11 (𝑅 ∈ DivRing → (𝑍 ∈ (Unit‘𝑅) ↔ (𝑍𝐵𝑍0 )))
3332biimpar 477 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ (𝑍𝐵𝑍0 )) → 𝑍 ∈ (Unit‘𝑅))
3426, 7, 30, 33syl12anc 836 . . . . . . . . 9 (𝜑𝑍 ∈ (Unit‘𝑅))
35 eqid 2729 . . . . . . . . . 10 (invr𝑅) = (invr𝑅)
36 eqid 2729 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
3731, 35, 2, 36unitlinv 20302 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑍 ∈ (Unit‘𝑅)) → (((invr𝑅)‘𝑍) · 𝑍) = (1r𝑅))
3815, 34, 37syl2anc 584 . . . . . . . 8 (𝜑 → (((invr𝑅)‘𝑍) · 𝑍) = (1r𝑅))
3938oveq1d 7402 . . . . . . 7 (𝜑 → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑋) = ((1r𝑅) · 𝑋))
4031, 35, 1ringinvcl 20301 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑍 ∈ (Unit‘𝑅)) → ((invr𝑅)‘𝑍) ∈ 𝐵)
4115, 34, 40syl2anc 584 . . . . . . . 8 (𝜑 → ((invr𝑅)‘𝑍) ∈ 𝐵)
421, 2ringass 20162 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘𝑍) ∈ 𝐵𝑍𝐵𝑋𝐵)) → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑋) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)))
4315, 41, 7, 5, 42syl13anc 1374 . . . . . . 7 (𝜑 → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑋) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)))
441, 2, 36ringlidm 20178 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((1r𝑅) · 𝑋) = 𝑋)
4515, 5, 44syl2anc 584 . . . . . . 7 (𝜑 → ((1r𝑅) · 𝑋) = 𝑋)
4639, 43, 453eqtr3d 2772 . . . . . 6 (𝜑 → (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)) = 𝑋)
4746adantr 480 . . . . 5 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)) = 𝑋)
4838oveq1d 7402 . . . . . . 7 (𝜑 → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑌) = ((1r𝑅) · 𝑌))
491, 2ringass 20162 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘𝑍) ∈ 𝐵𝑍𝐵𝑌𝐵)) → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑌) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)))
5015, 41, 7, 6, 49syl13anc 1374 . . . . . . 7 (𝜑 → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑌) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)))
511, 2, 36ringlidm 20178 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ((1r𝑅) · 𝑌) = 𝑌)
5215, 6, 51syl2anc 584 . . . . . . 7 (𝜑 → ((1r𝑅) · 𝑌) = 𝑌)
5348, 50, 523eqtr3d 2772 . . . . . 6 (𝜑 → (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)) = 𝑌)
5453adantr 480 . . . . 5 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)) = 𝑌)
5525, 47, 543eqtr3d 2772 . . . 4 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → 𝑋 = 𝑌)
5610pltne 18293 . . . . . . . 8 ((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋𝑌))
5756imp 406 . . . . . . 7 (((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝑌)
584, 5, 6, 9, 57syl31anc 1375 . . . . . 6 (𝜑𝑋𝑌)
5958adantr 480 . . . . 5 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → 𝑋𝑌)
6059neneqd 2930 . . . 4 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → ¬ 𝑋 = 𝑌)
6155, 60pm2.65da 816 . . 3 (𝜑 → ¬ (𝑍 · 𝑋) = (𝑍 · 𝑌))
6261neqned 2932 . 2 (𝜑 → (𝑍 · 𝑋) ≠ (𝑍 · 𝑌))
631, 2ringcl 20159 . . . 4 ((𝑅 ∈ Ring ∧ 𝑍𝐵𝑋𝐵) → (𝑍 · 𝑋) ∈ 𝐵)
6415, 7, 5, 63syl3anc 1373 . . 3 (𝜑 → (𝑍 · 𝑋) ∈ 𝐵)
651, 2ringcl 20159 . . . 4 ((𝑅 ∈ Ring ∧ 𝑍𝐵𝑌𝐵) → (𝑍 · 𝑌) ∈ 𝐵)
6615, 7, 6, 65syl3anc 1373 . . 3 (𝜑 → (𝑍 · 𝑌) ∈ 𝐵)
678, 10pltval 18291 . . 3 ((𝑅 ∈ oRing ∧ (𝑍 · 𝑋) ∈ 𝐵 ∧ (𝑍 · 𝑌) ∈ 𝐵) → ((𝑍 · 𝑋) < (𝑍 · 𝑌) ↔ ((𝑍 · 𝑋)(le‘𝑅)(𝑍 · 𝑌) ∧ (𝑍 · 𝑋) ≠ (𝑍 · 𝑌))))
684, 64, 66, 67syl3anc 1373 . 2 (𝜑 → ((𝑍 · 𝑋) < (𝑍 · 𝑌) ↔ ((𝑍 · 𝑋)(le‘𝑅)(𝑍 · 𝑌) ∧ (𝑍 · 𝑋) ≠ (𝑍 · 𝑌))))
6923, 62, 68mpbir2and 713 1 (𝜑 → (𝑍 · 𝑋) < (𝑍 · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  .rcmulr 17221  lecple 17227  0gc0g 17402  ltcplt 18269  Grpcgrp 18865  1rcur 20090  Ringcrg 20142  Unitcui 20264  invrcinvr 20296  DivRingcdr 20638  oRingcorng 33273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-0g 17404  df-plt 18289  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-drng 20640  df-omnd 33013  df-ogrp 33014  df-orng 33275
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator