Proof of Theorem ornglmullt
| Step | Hyp | Ref
| Expression |
| 1 | | ornglmullt.b |
. . 3
⊢ 𝐵 = (Base‘𝑅) |
| 2 | | ornglmullt.t |
. . 3
⊢ · =
(.r‘𝑅) |
| 3 | | ornglmullt.0 |
. . 3
⊢ 0 =
(0g‘𝑅) |
| 4 | | ornglmullt.1 |
. . 3
⊢ (𝜑 → 𝑅 ∈ oRing) |
| 5 | | ornglmullt.2 |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 6 | | ornglmullt.3 |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 7 | | ornglmullt.4 |
. . 3
⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| 8 | | eqid 2734 |
. . 3
⊢
(le‘𝑅) =
(le‘𝑅) |
| 9 | | ornglmullt.5 |
. . . 4
⊢ (𝜑 → 𝑋 < 𝑌) |
| 10 | | ornglmullt.l |
. . . . . 6
⊢ < =
(lt‘𝑅) |
| 11 | 8, 10 | pltle 18352 |
. . . . 5
⊢ ((𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → 𝑋(le‘𝑅)𝑌)) |
| 12 | 11 | imp 406 |
. . . 4
⊢ (((𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → 𝑋(le‘𝑅)𝑌) |
| 13 | 4, 5, 6, 9, 12 | syl31anc 1374 |
. . 3
⊢ (𝜑 → 𝑋(le‘𝑅)𝑌) |
| 14 | | orngring 33276 |
. . . . . 6
⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) |
| 15 | 4, 14 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 16 | | ringgrp 20208 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| 17 | 1, 3 | grpidcl 18957 |
. . . . 5
⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
| 18 | 15, 16, 17 | 3syl 18 |
. . . 4
⊢ (𝜑 → 0 ∈ 𝐵) |
| 19 | | ornglmullt.6 |
. . . 4
⊢ (𝜑 → 0 < 𝑍) |
| 20 | 8, 10 | pltle 18352 |
. . . . 5
⊢ ((𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ( 0 < 𝑍 → 0 (le‘𝑅)𝑍)) |
| 21 | 20 | imp 406 |
. . . 4
⊢ (((𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 0 < 𝑍) → 0 (le‘𝑅)𝑍) |
| 22 | 4, 18, 7, 19, 21 | syl31anc 1374 |
. . 3
⊢ (𝜑 → 0 (le‘𝑅)𝑍) |
| 23 | 1, 2, 3, 4, 5, 6, 7, 8, 13, 22 | ornglmulle 33281 |
. 2
⊢ (𝜑 → (𝑍 · 𝑋)(le‘𝑅)(𝑍 · 𝑌)) |
| 24 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → (𝑍 · 𝑋) = (𝑍 · 𝑌)) |
| 25 | 24 | oveq2d 7430 |
. . . . 5
⊢ ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → (((invr‘𝑅)‘𝑍) · (𝑍 · 𝑋)) = (((invr‘𝑅)‘𝑍) · (𝑍 · 𝑌))) |
| 26 | | ornglmullt.d |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ DivRing) |
| 27 | 10 | pltne 18353 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ( 0 < 𝑍 → 0 ≠ 𝑍)) |
| 28 | 27 | imp 406 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 0 < 𝑍) → 0 ≠ 𝑍) |
| 29 | 4, 18, 7, 19, 28 | syl31anc 1374 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ≠ 𝑍) |
| 30 | 29 | necomd 2986 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ≠ 0 ) |
| 31 | | eqid 2734 |
. . . . . . . . . . . 12
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
| 32 | 1, 31, 3 | drngunit 20707 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ DivRing → (𝑍 ∈ (Unit‘𝑅) ↔ (𝑍 ∈ 𝐵 ∧ 𝑍 ≠ 0 ))) |
| 33 | 32 | biimpar 477 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ DivRing ∧ (𝑍 ∈ 𝐵 ∧ 𝑍 ≠ 0 )) → 𝑍 ∈ (Unit‘𝑅)) |
| 34 | 26, 7, 30, 33 | syl12anc 836 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ (Unit‘𝑅)) |
| 35 | | eqid 2734 |
. . . . . . . . . 10
⊢
(invr‘𝑅) = (invr‘𝑅) |
| 36 | | eqid 2734 |
. . . . . . . . . 10
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 37 | 31, 35, 2, 36 | unitlinv 20366 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ (Unit‘𝑅)) →
(((invr‘𝑅)‘𝑍) · 𝑍) = (1r‘𝑅)) |
| 38 | 15, 34, 37 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 →
(((invr‘𝑅)‘𝑍) · 𝑍) = (1r‘𝑅)) |
| 39 | 38 | oveq1d 7429 |
. . . . . . 7
⊢ (𝜑 →
((((invr‘𝑅)‘𝑍) · 𝑍) · 𝑋) = ((1r‘𝑅) · 𝑋)) |
| 40 | 31, 35, 1 | ringinvcl 20365 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ (Unit‘𝑅)) →
((invr‘𝑅)‘𝑍) ∈ 𝐵) |
| 41 | 15, 34, 40 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 →
((invr‘𝑅)‘𝑍) ∈ 𝐵) |
| 42 | 1, 2 | ringass 20223 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧
(((invr‘𝑅)‘𝑍) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((((invr‘𝑅)‘𝑍) · 𝑍) · 𝑋) = (((invr‘𝑅)‘𝑍) · (𝑍 · 𝑋))) |
| 43 | 15, 41, 7, 5, 42 | syl13anc 1373 |
. . . . . . 7
⊢ (𝜑 →
((((invr‘𝑅)‘𝑍) · 𝑍) · 𝑋) = (((invr‘𝑅)‘𝑍) · (𝑍 · 𝑋))) |
| 44 | 1, 2, 36 | ringlidm 20239 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((1r‘𝑅) · 𝑋) = 𝑋) |
| 45 | 15, 5, 44 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 →
((1r‘𝑅)
·
𝑋) = 𝑋) |
| 46 | 39, 43, 45 | 3eqtr3d 2777 |
. . . . . 6
⊢ (𝜑 →
(((invr‘𝑅)‘𝑍) · (𝑍 · 𝑋)) = 𝑋) |
| 47 | 46 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → (((invr‘𝑅)‘𝑍) · (𝑍 · 𝑋)) = 𝑋) |
| 48 | 38 | oveq1d 7429 |
. . . . . . 7
⊢ (𝜑 →
((((invr‘𝑅)‘𝑍) · 𝑍) · 𝑌) = ((1r‘𝑅) · 𝑌)) |
| 49 | 1, 2 | ringass 20223 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧
(((invr‘𝑅)‘𝑍) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((((invr‘𝑅)‘𝑍) · 𝑍) · 𝑌) = (((invr‘𝑅)‘𝑍) · (𝑍 · 𝑌))) |
| 50 | 15, 41, 7, 6, 49 | syl13anc 1373 |
. . . . . . 7
⊢ (𝜑 →
((((invr‘𝑅)‘𝑍) · 𝑍) · 𝑌) = (((invr‘𝑅)‘𝑍) · (𝑍 · 𝑌))) |
| 51 | 1, 2, 36 | ringlidm 20239 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → ((1r‘𝑅) · 𝑌) = 𝑌) |
| 52 | 15, 6, 51 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 →
((1r‘𝑅)
·
𝑌) = 𝑌) |
| 53 | 48, 50, 52 | 3eqtr3d 2777 |
. . . . . 6
⊢ (𝜑 →
(((invr‘𝑅)‘𝑍) · (𝑍 · 𝑌)) = 𝑌) |
| 54 | 53 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → (((invr‘𝑅)‘𝑍) · (𝑍 · 𝑌)) = 𝑌) |
| 55 | 25, 47, 54 | 3eqtr3d 2777 |
. . . 4
⊢ ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → 𝑋 = 𝑌) |
| 56 | 10 | pltne 18353 |
. . . . . . . 8
⊢ ((𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → 𝑋 ≠ 𝑌)) |
| 57 | 56 | imp 406 |
. . . . . . 7
⊢ (((𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → 𝑋 ≠ 𝑌) |
| 58 | 4, 5, 6, 9, 57 | syl31anc 1374 |
. . . . . 6
⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| 59 | 58 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → 𝑋 ≠ 𝑌) |
| 60 | 59 | neneqd 2936 |
. . . 4
⊢ ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → ¬ 𝑋 = 𝑌) |
| 61 | 55, 60 | pm2.65da 816 |
. . 3
⊢ (𝜑 → ¬ (𝑍 · 𝑋) = (𝑍 · 𝑌)) |
| 62 | 61 | neqned 2938 |
. 2
⊢ (𝜑 → (𝑍 · 𝑋) ≠ (𝑍 · 𝑌)) |
| 63 | 1, 2 | ringcl 20220 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑍 · 𝑋) ∈ 𝐵) |
| 64 | 15, 7, 5, 63 | syl3anc 1372 |
. . 3
⊢ (𝜑 → (𝑍 · 𝑋) ∈ 𝐵) |
| 65 | 1, 2 | ringcl 20220 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑍 · 𝑌) ∈ 𝐵) |
| 66 | 15, 7, 6, 65 | syl3anc 1372 |
. . 3
⊢ (𝜑 → (𝑍 · 𝑌) ∈ 𝐵) |
| 67 | 8, 10 | pltval 18351 |
. . 3
⊢ ((𝑅 ∈ oRing ∧ (𝑍 · 𝑋) ∈ 𝐵 ∧ (𝑍 · 𝑌) ∈ 𝐵) → ((𝑍 · 𝑋) < (𝑍 · 𝑌) ↔ ((𝑍 · 𝑋)(le‘𝑅)(𝑍 · 𝑌) ∧ (𝑍 · 𝑋) ≠ (𝑍 · 𝑌)))) |
| 68 | 4, 64, 66, 67 | syl3anc 1372 |
. 2
⊢ (𝜑 → ((𝑍 · 𝑋) < (𝑍 · 𝑌) ↔ ((𝑍 · 𝑋)(le‘𝑅)(𝑍 · 𝑌) ∧ (𝑍 · 𝑋) ≠ (𝑍 · 𝑌)))) |
| 69 | 23, 62, 68 | mpbir2and 713 |
1
⊢ (𝜑 → (𝑍 · 𝑋) < (𝑍 · 𝑌)) |