Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ornglmullt Structured version   Visualization version   GIF version

Theorem ornglmullt 32102
Description: In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018.)
Hypotheses
Ref Expression
ornglmullt.b 𝐵 = (Base‘𝑅)
ornglmullt.t · = (.r𝑅)
ornglmullt.0 0 = (0g𝑅)
ornglmullt.1 (𝜑𝑅 ∈ oRing)
ornglmullt.2 (𝜑𝑋𝐵)
ornglmullt.3 (𝜑𝑌𝐵)
ornglmullt.4 (𝜑𝑍𝐵)
ornglmullt.l < = (lt‘𝑅)
ornglmullt.d (𝜑𝑅 ∈ DivRing)
ornglmullt.5 (𝜑𝑋 < 𝑌)
ornglmullt.6 (𝜑0 < 𝑍)
Assertion
Ref Expression
ornglmullt (𝜑 → (𝑍 · 𝑋) < (𝑍 · 𝑌))

Proof of Theorem ornglmullt
StepHypRef Expression
1 ornglmullt.b . . 3 𝐵 = (Base‘𝑅)
2 ornglmullt.t . . 3 · = (.r𝑅)
3 ornglmullt.0 . . 3 0 = (0g𝑅)
4 ornglmullt.1 . . 3 (𝜑𝑅 ∈ oRing)
5 ornglmullt.2 . . 3 (𝜑𝑋𝐵)
6 ornglmullt.3 . . 3 (𝜑𝑌𝐵)
7 ornglmullt.4 . . 3 (𝜑𝑍𝐵)
8 eqid 2736 . . 3 (le‘𝑅) = (le‘𝑅)
9 ornglmullt.5 . . . 4 (𝜑𝑋 < 𝑌)
10 ornglmullt.l . . . . . 6 < = (lt‘𝑅)
118, 10pltle 18222 . . . . 5 ((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋(le‘𝑅)𝑌))
1211imp 407 . . . 4 (((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋(le‘𝑅)𝑌)
134, 5, 6, 9, 12syl31anc 1373 . . 3 (𝜑𝑋(le‘𝑅)𝑌)
14 orngring 32095 . . . . . 6 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
154, 14syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
16 ringgrp 19969 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
171, 3grpidcl 18778 . . . . 5 (𝑅 ∈ Grp → 0𝐵)
1815, 16, 173syl 18 . . . 4 (𝜑0𝐵)
19 ornglmullt.6 . . . 4 (𝜑0 < 𝑍)
208, 10pltle 18222 . . . . 5 ((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) → ( 0 < 𝑍0 (le‘𝑅)𝑍))
2120imp 407 . . . 4 (((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) ∧ 0 < 𝑍) → 0 (le‘𝑅)𝑍)
224, 18, 7, 19, 21syl31anc 1373 . . 3 (𝜑0 (le‘𝑅)𝑍)
231, 2, 3, 4, 5, 6, 7, 8, 13, 22ornglmulle 32100 . 2 (𝜑 → (𝑍 · 𝑋)(le‘𝑅)(𝑍 · 𝑌))
24 simpr 485 . . . . . 6 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → (𝑍 · 𝑋) = (𝑍 · 𝑌))
2524oveq2d 7373 . . . . 5 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)))
26 ornglmullt.d . . . . . . . . . 10 (𝜑𝑅 ∈ DivRing)
2710pltne 18223 . . . . . . . . . . . . 13 ((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) → ( 0 < 𝑍0𝑍))
2827imp 407 . . . . . . . . . . . 12 (((𝑅 ∈ oRing ∧ 0𝐵𝑍𝐵) ∧ 0 < 𝑍) → 0𝑍)
294, 18, 7, 19, 28syl31anc 1373 . . . . . . . . . . 11 (𝜑0𝑍)
3029necomd 2999 . . . . . . . . . 10 (𝜑𝑍0 )
31 eqid 2736 . . . . . . . . . . . 12 (Unit‘𝑅) = (Unit‘𝑅)
321, 31, 3drngunit 20190 . . . . . . . . . . 11 (𝑅 ∈ DivRing → (𝑍 ∈ (Unit‘𝑅) ↔ (𝑍𝐵𝑍0 )))
3332biimpar 478 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ (𝑍𝐵𝑍0 )) → 𝑍 ∈ (Unit‘𝑅))
3426, 7, 30, 33syl12anc 835 . . . . . . . . 9 (𝜑𝑍 ∈ (Unit‘𝑅))
35 eqid 2736 . . . . . . . . . 10 (invr𝑅) = (invr𝑅)
36 eqid 2736 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
3731, 35, 2, 36unitlinv 20106 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑍 ∈ (Unit‘𝑅)) → (((invr𝑅)‘𝑍) · 𝑍) = (1r𝑅))
3815, 34, 37syl2anc 584 . . . . . . . 8 (𝜑 → (((invr𝑅)‘𝑍) · 𝑍) = (1r𝑅))
3938oveq1d 7372 . . . . . . 7 (𝜑 → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑋) = ((1r𝑅) · 𝑋))
4031, 35, 1ringinvcl 20105 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑍 ∈ (Unit‘𝑅)) → ((invr𝑅)‘𝑍) ∈ 𝐵)
4115, 34, 40syl2anc 584 . . . . . . . 8 (𝜑 → ((invr𝑅)‘𝑍) ∈ 𝐵)
421, 2ringass 19984 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘𝑍) ∈ 𝐵𝑍𝐵𝑋𝐵)) → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑋) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)))
4315, 41, 7, 5, 42syl13anc 1372 . . . . . . 7 (𝜑 → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑋) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)))
441, 2, 36ringlidm 19992 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((1r𝑅) · 𝑋) = 𝑋)
4515, 5, 44syl2anc 584 . . . . . . 7 (𝜑 → ((1r𝑅) · 𝑋) = 𝑋)
4639, 43, 453eqtr3d 2784 . . . . . 6 (𝜑 → (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)) = 𝑋)
4746adantr 481 . . . . 5 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → (((invr𝑅)‘𝑍) · (𝑍 · 𝑋)) = 𝑋)
4838oveq1d 7372 . . . . . . 7 (𝜑 → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑌) = ((1r𝑅) · 𝑌))
491, 2ringass 19984 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘𝑍) ∈ 𝐵𝑍𝐵𝑌𝐵)) → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑌) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)))
5015, 41, 7, 6, 49syl13anc 1372 . . . . . . 7 (𝜑 → ((((invr𝑅)‘𝑍) · 𝑍) · 𝑌) = (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)))
511, 2, 36ringlidm 19992 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ((1r𝑅) · 𝑌) = 𝑌)
5215, 6, 51syl2anc 584 . . . . . . 7 (𝜑 → ((1r𝑅) · 𝑌) = 𝑌)
5348, 50, 523eqtr3d 2784 . . . . . 6 (𝜑 → (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)) = 𝑌)
5453adantr 481 . . . . 5 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → (((invr𝑅)‘𝑍) · (𝑍 · 𝑌)) = 𝑌)
5525, 47, 543eqtr3d 2784 . . . 4 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → 𝑋 = 𝑌)
5610pltne 18223 . . . . . . . 8 ((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋𝑌))
5756imp 407 . . . . . . 7 (((𝑅 ∈ oRing ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝑌)
584, 5, 6, 9, 57syl31anc 1373 . . . . . 6 (𝜑𝑋𝑌)
5958adantr 481 . . . . 5 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → 𝑋𝑌)
6059neneqd 2948 . . . 4 ((𝜑 ∧ (𝑍 · 𝑋) = (𝑍 · 𝑌)) → ¬ 𝑋 = 𝑌)
6155, 60pm2.65da 815 . . 3 (𝜑 → ¬ (𝑍 · 𝑋) = (𝑍 · 𝑌))
6261neqned 2950 . 2 (𝜑 → (𝑍 · 𝑋) ≠ (𝑍 · 𝑌))
631, 2ringcl 19981 . . . 4 ((𝑅 ∈ Ring ∧ 𝑍𝐵𝑋𝐵) → (𝑍 · 𝑋) ∈ 𝐵)
6415, 7, 5, 63syl3anc 1371 . . 3 (𝜑 → (𝑍 · 𝑋) ∈ 𝐵)
651, 2ringcl 19981 . . . 4 ((𝑅 ∈ Ring ∧ 𝑍𝐵𝑌𝐵) → (𝑍 · 𝑌) ∈ 𝐵)
6615, 7, 6, 65syl3anc 1371 . . 3 (𝜑 → (𝑍 · 𝑌) ∈ 𝐵)
678, 10pltval 18221 . . 3 ((𝑅 ∈ oRing ∧ (𝑍 · 𝑋) ∈ 𝐵 ∧ (𝑍 · 𝑌) ∈ 𝐵) → ((𝑍 · 𝑋) < (𝑍 · 𝑌) ↔ ((𝑍 · 𝑋)(le‘𝑅)(𝑍 · 𝑌) ∧ (𝑍 · 𝑋) ≠ (𝑍 · 𝑌))))
684, 64, 66, 67syl3anc 1371 . 2 (𝜑 → ((𝑍 · 𝑋) < (𝑍 · 𝑌) ↔ ((𝑍 · 𝑋)(le‘𝑅)(𝑍 · 𝑌) ∧ (𝑍 · 𝑋) ≠ (𝑍 · 𝑌))))
6923, 62, 68mpbir2and 711 1 (𝜑 → (𝑍 · 𝑋) < (𝑍 · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cfv 6496  (class class class)co 7357  Basecbs 17083  .rcmulr 17134  lecple 17140  0gc0g 17321  ltcplt 18197  Grpcgrp 18748  1rcur 19913  Ringcrg 19964  Unitcui 20068  invrcinvr 20100  DivRingcdr 20185  oRingcorng 32090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-0g 17323  df-plt 18219  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-drng 20187  df-omnd 31907  df-ogrp 31908  df-orng 32092
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator