| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ovsn | Structured version Visualization version GIF version | ||
| Description: The operation value of a singleton of a nested ordered pair is the last member. (Contributed by Zhi Wang, 22-Oct-2025.) |
| Ref | Expression |
|---|---|
| ovsn.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| ovsn | ⊢ (𝐴{〈〈𝐴, 𝐵〉, 𝐶〉}𝐵) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovsn.1 | . 2 ⊢ 𝐶 ∈ V | |
| 2 | ovsng 48889 | . 2 ⊢ (𝐶 ∈ V → (𝐴{〈〈𝐴, 𝐵〉, 𝐶〉}𝐵) = 𝐶) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴{〈〈𝐴, 𝐵〉, 𝐶〉}𝐵) = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4571 〈cop 4577 (class class class)co 7341 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |