| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ovsng | Structured version Visualization version GIF version | ||
| Description: The operation value of a singleton of a nested ordered pair is the last member. (Contributed by Zhi Wang, 22-Oct-2025.) |
| Ref | Expression |
|---|---|
| ovsng | ⊢ (𝐶 ∈ 𝑉 → (𝐴{〈〈𝐴, 𝐵〉, 𝐶〉}𝐵) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7402 | . 2 ⊢ (𝐴{〈〈𝐴, 𝐵〉, 𝐶〉}𝐵) = ({〈〈𝐴, 𝐵〉, 𝐶〉}‘〈𝐴, 𝐵〉) | |
| 2 | opex 5436 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 3 | fvsng 7168 | . . 3 ⊢ ((〈𝐴, 𝐵〉 ∈ V ∧ 𝐶 ∈ 𝑉) → ({〈〈𝐴, 𝐵〉, 𝐶〉}‘〈𝐴, 𝐵〉) = 𝐶) | |
| 4 | 2, 3 | mpan 690 | . 2 ⊢ (𝐶 ∈ 𝑉 → ({〈〈𝐴, 𝐵〉, 𝐶〉}‘〈𝐴, 𝐵〉) = 𝐶) |
| 5 | 1, 4 | eqtrid 2781 | 1 ⊢ (𝐶 ∈ 𝑉 → (𝐴{〈〈𝐴, 𝐵〉, 𝐶〉}𝐵) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3457 {csn 4599 〈cop 4605 ‘cfv 6527 (class class class)co 7399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-iota 6480 df-fun 6529 df-fv 6535 df-ov 7402 |
| This theorem is referenced by: ovsng2 48715 ovsn 48716 |
| Copyright terms: Public domain | W3C validator |