Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovsng Structured version   Visualization version   GIF version

Theorem ovsng 48889
Description: The operation value of a singleton of a nested ordered pair is the last member. (Contributed by Zhi Wang, 22-Oct-2025.)
Assertion
Ref Expression
ovsng (𝐶𝑉 → (𝐴{⟨⟨𝐴, 𝐵⟩, 𝐶⟩}𝐵) = 𝐶)

Proof of Theorem ovsng
StepHypRef Expression
1 df-ov 7344 . 2 (𝐴{⟨⟨𝐴, 𝐵⟩, 𝐶⟩}𝐵) = ({⟨⟨𝐴, 𝐵⟩, 𝐶⟩}‘⟨𝐴, 𝐵⟩)
2 opex 5399 . . 3 𝐴, 𝐵⟩ ∈ V
3 fvsng 7109 . . 3 ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶𝑉) → ({⟨⟨𝐴, 𝐵⟩, 𝐶⟩}‘⟨𝐴, 𝐵⟩) = 𝐶)
42, 3mpan 690 . 2 (𝐶𝑉 → ({⟨⟨𝐴, 𝐵⟩, 𝐶⟩}‘⟨𝐴, 𝐵⟩) = 𝐶)
51, 4eqtrid 2778 1 (𝐶𝑉 → (𝐴{⟨⟨𝐴, 𝐵⟩, 𝐶⟩}𝐵) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4571  cop 4577  cfv 6476  (class class class)co 7341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344
This theorem is referenced by:  ovsng2  48890  ovsn  48891
  Copyright terms: Public domain W3C validator