Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovsng Structured version   Visualization version   GIF version

Theorem ovsng 48714
Description: The operation value of a singleton of a nested ordered pair is the last member. (Contributed by Zhi Wang, 22-Oct-2025.)
Assertion
Ref Expression
ovsng (𝐶𝑉 → (𝐴{⟨⟨𝐴, 𝐵⟩, 𝐶⟩}𝐵) = 𝐶)

Proof of Theorem ovsng
StepHypRef Expression
1 df-ov 7402 . 2 (𝐴{⟨⟨𝐴, 𝐵⟩, 𝐶⟩}𝐵) = ({⟨⟨𝐴, 𝐵⟩, 𝐶⟩}‘⟨𝐴, 𝐵⟩)
2 opex 5436 . . 3 𝐴, 𝐵⟩ ∈ V
3 fvsng 7168 . . 3 ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶𝑉) → ({⟨⟨𝐴, 𝐵⟩, 𝐶⟩}‘⟨𝐴, 𝐵⟩) = 𝐶)
42, 3mpan 690 . 2 (𝐶𝑉 → ({⟨⟨𝐴, 𝐵⟩, 𝐶⟩}‘⟨𝐴, 𝐵⟩) = 𝐶)
51, 4eqtrid 2781 1 (𝐶𝑉 → (𝐴{⟨⟨𝐴, 𝐵⟩, 𝐶⟩}𝐵) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3457  {csn 4599  cop 4605  cfv 6527  (class class class)co 7399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-iota 6480  df-fun 6529  df-fv 6535  df-ov 7402
This theorem is referenced by:  ovsng2  48715  ovsn  48716
  Copyright terms: Public domain W3C validator