Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovsng Structured version   Visualization version   GIF version

Theorem ovsng 48834
Description: The operation value of a singleton of a nested ordered pair is the last member. (Contributed by Zhi Wang, 22-Oct-2025.)
Assertion
Ref Expression
ovsng (𝐶𝑉 → (𝐴{⟨⟨𝐴, 𝐵⟩, 𝐶⟩}𝐵) = 𝐶)

Proof of Theorem ovsng
StepHypRef Expression
1 df-ov 7392 . 2 (𝐴{⟨⟨𝐴, 𝐵⟩, 𝐶⟩}𝐵) = ({⟨⟨𝐴, 𝐵⟩, 𝐶⟩}‘⟨𝐴, 𝐵⟩)
2 opex 5426 . . 3 𝐴, 𝐵⟩ ∈ V
3 fvsng 7156 . . 3 ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶𝑉) → ({⟨⟨𝐴, 𝐵⟩, 𝐶⟩}‘⟨𝐴, 𝐵⟩) = 𝐶)
42, 3mpan 690 . 2 (𝐶𝑉 → ({⟨⟨𝐴, 𝐵⟩, 𝐶⟩}‘⟨𝐴, 𝐵⟩) = 𝐶)
51, 4eqtrid 2777 1 (𝐶𝑉 → (𝐴{⟨⟨𝐴, 𝐵⟩, 𝐶⟩}𝐵) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  {csn 4591  cop 4597  cfv 6513  (class class class)co 7389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-iota 6466  df-fun 6515  df-fv 6521  df-ov 7392
This theorem is referenced by:  ovsng2  48835  ovsn  48836
  Copyright terms: Public domain W3C validator