| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ovsng2 | Structured version Visualization version GIF version | ||
| Description: The operation value of a singleton of an ordered triple is the last member. (Contributed by Zhi Wang, 22-Oct-2025.) |
| Ref | Expression |
|---|---|
| ovsng2 | ⊢ (𝐶 ∈ 𝑉 → (𝐴{〈𝐴, 𝐵, 𝐶〉}𝐵) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot 4615 | . . . 4 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
| 2 | 1 | sneqi 4617 | . . 3 ⊢ {〈𝐴, 𝐵, 𝐶〉} = {〈〈𝐴, 𝐵〉, 𝐶〉} |
| 3 | 2 | oveqi 7426 | . 2 ⊢ (𝐴{〈𝐴, 𝐵, 𝐶〉}𝐵) = (𝐴{〈〈𝐴, 𝐵〉, 𝐶〉}𝐵) |
| 4 | ovsng 48742 | . 2 ⊢ (𝐶 ∈ 𝑉 → (𝐴{〈〈𝐴, 𝐵〉, 𝐶〉}𝐵) = 𝐶) | |
| 5 | 3, 4 | eqtrid 2781 | 1 ⊢ (𝐶 ∈ 𝑉 → (𝐴{〈𝐴, 𝐵, 𝐶〉}𝐵) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {csn 4606 〈cop 4612 〈cotp 4614 (class class class)co 7413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-ot 4615 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 |
| This theorem is referenced by: ovsn2 48745 |
| Copyright terms: Public domain | W3C validator |