| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ovsng2 | Structured version Visualization version GIF version | ||
| Description: The operation value of a singleton of an ordered triple is the last member. (Contributed by Zhi Wang, 22-Oct-2025.) |
| Ref | Expression |
|---|---|
| ovsng2 | ⊢ (𝐶 ∈ 𝑉 → (𝐴{〈𝐴, 𝐵, 𝐶〉}𝐵) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot 4588 | . . . 4 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
| 2 | 1 | sneqi 4590 | . . 3 ⊢ {〈𝐴, 𝐵, 𝐶〉} = {〈〈𝐴, 𝐵〉, 𝐶〉} |
| 3 | 2 | oveqi 7366 | . 2 ⊢ (𝐴{〈𝐴, 𝐵, 𝐶〉}𝐵) = (𝐴{〈〈𝐴, 𝐵〉, 𝐶〉}𝐵) |
| 4 | ovsng 48862 | . 2 ⊢ (𝐶 ∈ 𝑉 → (𝐴{〈〈𝐴, 𝐵〉, 𝐶〉}𝐵) = 𝐶) | |
| 5 | 3, 4 | eqtrid 2776 | 1 ⊢ (𝐶 ∈ 𝑉 → (𝐴{〈𝐴, 𝐵, 𝐶〉}𝐵) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4579 〈cop 4585 〈cotp 4587 (class class class)co 7353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-ot 4588 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 |
| This theorem is referenced by: ovsn2 48865 |
| Copyright terms: Public domain | W3C validator |