Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pfxnndmnd | Structured version Visualization version GIF version |
Description: The value of a prefix operation for out-of-domain arguments. (This is due to our definition of function values for out-of-domain arguments, see ndmfv 6786). (Contributed by AV, 3-Dec-2022.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pfxnndmnd | ⊢ (¬ (𝑆 ∈ V ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pfx 14312 | . 2 ⊢ prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr 〈0, 𝑙〉)) | |
2 | 1 | mpondm0 7488 | 1 ⊢ (¬ (𝑆 ∈ V ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 〈cop 4564 (class class class)co 7255 0cc0 10802 ℕ0cn0 12163 substr csubstr 14281 prefix cpfx 14311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-dm 5590 df-iota 6376 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-pfx 14312 |
This theorem is referenced by: pfxval0 14317 pfxnd0 14329 |
Copyright terms: Public domain | W3C validator |