| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pfxnndmnd | Structured version Visualization version GIF version | ||
| Description: The value of a prefix operation for out-of-domain arguments. (This is due to our definition of function values for out-of-domain arguments, see ndmfv 6893). (Contributed by AV, 3-Dec-2022.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pfxnndmnd | ⊢ (¬ (𝑆 ∈ V ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pfx 14636 | . 2 ⊢ prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr 〈0, 𝑙〉)) | |
| 2 | 1 | mpondm0 7629 | 1 ⊢ (¬ (𝑆 ∈ V ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 〈cop 4595 (class class class)co 7387 0cc0 11068 ℕ0cn0 12442 substr csubstr 14605 prefix cpfx 14635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-dm 5648 df-iota 6464 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-pfx 14636 |
| This theorem is referenced by: pfxval0 14641 pfxnd0 14653 |
| Copyright terms: Public domain | W3C validator |