MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxnndmnd Structured version   Visualization version   GIF version

Theorem pfxnndmnd 14690
Description: The value of a prefix operation for out-of-domain arguments. (This is due to our definition of function values for out-of-domain arguments, see ndmfv 6911). (Contributed by AV, 3-Dec-2022.) (New usage is discouraged.)
Assertion
Ref Expression
pfxnndmnd (¬ (𝑆 ∈ V ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = ∅)

Proof of Theorem pfxnndmnd
Dummy variables 𝑠 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pfx 14689 . 2 prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr ⟨0, 𝑙⟩))
21mpondm0 7647 1 (¬ (𝑆 ∈ V ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  c0 4308  cop 4607  (class class class)co 7405  0cc0 11129  0cn0 12501   substr csubstr 14658   prefix cpfx 14688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-dm 5664  df-iota 6484  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-pfx 14689
This theorem is referenced by:  pfxval0  14694  pfxnd0  14706
  Copyright terms: Public domain W3C validator