MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxnndmnd Structured version   Visualization version   GIF version

Theorem pfxnndmnd 14707
Description: The value of a prefix operation for out-of-domain arguments. (This is due to our definition of function values for out-of-domain arguments, see ndmfv 6942). (Contributed by AV, 3-Dec-2022.) (New usage is discouraged.)
Assertion
Ref Expression
pfxnndmnd (¬ (𝑆 ∈ V ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = ∅)

Proof of Theorem pfxnndmnd
Dummy variables 𝑠 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pfx 14706 . 2 prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr ⟨0, 𝑙⟩))
21mpondm0 7673 1 (¬ (𝑆 ∈ V ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  c0 4339  cop 4637  (class class class)co 7431  0cc0 11153  0cn0 12524   substr csubstr 14675   prefix cpfx 14705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-dm 5699  df-iota 6516  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-pfx 14706
This theorem is referenced by:  pfxval0  14711  pfxnd0  14723
  Copyright terms: Public domain W3C validator