![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pfxnndmnd | Structured version Visualization version GIF version |
Description: The value of a prefix operation for out-of-domain arguments. (This is due to our definition of function values for out-of-domain arguments, see ndmfv 6882). (Contributed by AV, 3-Dec-2022.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pfxnndmnd | ⊢ (¬ (𝑆 ∈ V ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pfx 14566 | . 2 ⊢ prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr ⟨0, 𝑙⟩)) | |
2 | 1 | mpondm0 7599 | 1 ⊢ (¬ (𝑆 ∈ V ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3448 ∅c0 4287 ⟨cop 4597 (class class class)co 7362 0cc0 11058 ℕ0cn0 12420 substr csubstr 14535 prefix cpfx 14565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-xp 5644 df-dm 5648 df-iota 6453 df-fv 6509 df-ov 7365 df-oprab 7366 df-mpo 7367 df-pfx 14566 |
This theorem is referenced by: pfxval0 14571 pfxnd0 14583 |
Copyright terms: Public domain | W3C validator |