![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pfxval | Structured version Visualization version GIF version |
Description: Value of a prefix operation. (Contributed by AV, 2-May-2020.) |
Ref | Expression |
---|---|
pfxval | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr ⟨0, 𝐿⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pfx 14621 | . . 3 ⊢ prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr ⟨0, 𝑙⟩)) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr ⟨0, 𝑙⟩))) |
3 | simpl 484 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑙 = 𝐿) → 𝑠 = 𝑆) | |
4 | opeq2 4875 | . . . . 5 ⊢ (𝑙 = 𝐿 → ⟨0, 𝑙⟩ = ⟨0, 𝐿⟩) | |
5 | 4 | adantl 483 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑙 = 𝐿) → ⟨0, 𝑙⟩ = ⟨0, 𝐿⟩) |
6 | 3, 5 | oveq12d 7427 | . . 3 ⊢ ((𝑠 = 𝑆 ∧ 𝑙 = 𝐿) → (𝑠 substr ⟨0, 𝑙⟩) = (𝑆 substr ⟨0, 𝐿⟩)) |
7 | 6 | adantl 483 | . 2 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) ∧ (𝑠 = 𝑆 ∧ 𝑙 = 𝐿)) → (𝑠 substr ⟨0, 𝑙⟩) = (𝑆 substr ⟨0, 𝐿⟩)) |
8 | elex 3493 | . . 3 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
9 | 8 | adantr 482 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → 𝑆 ∈ V) |
10 | simpr 486 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → 𝐿 ∈ ℕ0) | |
11 | ovexd 7444 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → (𝑆 substr ⟨0, 𝐿⟩) ∈ V) | |
12 | 2, 7, 9, 10, 11 | ovmpod 7560 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr ⟨0, 𝐿⟩)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ⟨cop 4635 (class class class)co 7409 ∈ cmpo 7411 0cc0 11110 ℕ0cn0 12472 substr csubstr 14590 prefix cpfx 14620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-pfx 14621 |
This theorem is referenced by: pfx00 14624 pfx0 14625 pfxval0 14626 pfxcl 14627 pfxmpt 14628 pfxfv 14632 pfxnd 14637 pfx1 14653 pfxswrd 14656 swrdpfx 14657 pfxpfx 14658 swrdccat 14685 pfxccatpfx1 14686 pfxccatpfx2 14687 cshw0 14744 pfxco 14789 clwwlkf1 29333 cycpmco2f1 32314 |
Copyright terms: Public domain | W3C validator |