MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxval Structured version   Visualization version   GIF version

Theorem pfxval 14598
Description: Value of a prefix operation. (Contributed by AV, 2-May-2020.)
Assertion
Ref Expression
pfxval ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr ⟨0, 𝐿⟩))

Proof of Theorem pfxval
Dummy variables 𝑙 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pfx 14596 . . 3 prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr ⟨0, 𝑙⟩))
21a1i 11 . 2 ((𝑆𝑉𝐿 ∈ ℕ0) → prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr ⟨0, 𝑙⟩)))
3 simpl 482 . . . 4 ((𝑠 = 𝑆𝑙 = 𝐿) → 𝑠 = 𝑆)
4 opeq2 4828 . . . . 5 (𝑙 = 𝐿 → ⟨0, 𝑙⟩ = ⟨0, 𝐿⟩)
54adantl 481 . . . 4 ((𝑠 = 𝑆𝑙 = 𝐿) → ⟨0, 𝑙⟩ = ⟨0, 𝐿⟩)
63, 5oveq12d 7371 . . 3 ((𝑠 = 𝑆𝑙 = 𝐿) → (𝑠 substr ⟨0, 𝑙⟩) = (𝑆 substr ⟨0, 𝐿⟩))
76adantl 481 . 2 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑠 = 𝑆𝑙 = 𝐿)) → (𝑠 substr ⟨0, 𝑙⟩) = (𝑆 substr ⟨0, 𝐿⟩))
8 elex 3459 . . 3 (𝑆𝑉𝑆 ∈ V)
98adantr 480 . 2 ((𝑆𝑉𝐿 ∈ ℕ0) → 𝑆 ∈ V)
10 simpr 484 . 2 ((𝑆𝑉𝐿 ∈ ℕ0) → 𝐿 ∈ ℕ0)
11 ovexd 7388 . 2 ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 substr ⟨0, 𝐿⟩) ∈ V)
122, 7, 9, 10, 11ovmpod 7505 1 ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr ⟨0, 𝐿⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cop 4585  (class class class)co 7353  cmpo 7355  0cc0 11028  0cn0 12402   substr csubstr 14565   prefix cpfx 14595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-pfx 14596
This theorem is referenced by:  pfx00  14599  pfx0  14600  pfxval0  14601  pfxcl  14602  pfxmpt  14603  pfxfv  14607  pfxnd  14612  pfx1  14627  pfxswrd  14630  swrdpfx  14631  pfxpfx  14632  swrdccat  14659  pfxccatpfx1  14660  pfxccatpfx2  14661  cshw0  14718  pfxco  14763  clwwlkf1  30011  cycpmco2f1  33079
  Copyright terms: Public domain W3C validator