MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxval Structured version   Visualization version   GIF version

Theorem pfxval 14629
Description: Value of a prefix operation. (Contributed by AV, 2-May-2020.)
Assertion
Ref Expression
pfxval ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr ⟨0, 𝐿⟩))

Proof of Theorem pfxval
Dummy variables 𝑙 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pfx 14627 . . 3 prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr ⟨0, 𝑙⟩))
21a1i 11 . 2 ((𝑆𝑉𝐿 ∈ ℕ0) → prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr ⟨0, 𝑙⟩)))
3 simpl 481 . . . 4 ((𝑠 = 𝑆𝑙 = 𝐿) → 𝑠 = 𝑆)
4 opeq2 4875 . . . . 5 (𝑙 = 𝐿 → ⟨0, 𝑙⟩ = ⟨0, 𝐿⟩)
54adantl 480 . . . 4 ((𝑠 = 𝑆𝑙 = 𝐿) → ⟨0, 𝑙⟩ = ⟨0, 𝐿⟩)
63, 5oveq12d 7431 . . 3 ((𝑠 = 𝑆𝑙 = 𝐿) → (𝑠 substr ⟨0, 𝑙⟩) = (𝑆 substr ⟨0, 𝐿⟩))
76adantl 480 . 2 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑠 = 𝑆𝑙 = 𝐿)) → (𝑠 substr ⟨0, 𝑙⟩) = (𝑆 substr ⟨0, 𝐿⟩))
8 elex 3491 . . 3 (𝑆𝑉𝑆 ∈ V)
98adantr 479 . 2 ((𝑆𝑉𝐿 ∈ ℕ0) → 𝑆 ∈ V)
10 simpr 483 . 2 ((𝑆𝑉𝐿 ∈ ℕ0) → 𝐿 ∈ ℕ0)
11 ovexd 7448 . 2 ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 substr ⟨0, 𝐿⟩) ∈ V)
122, 7, 9, 10, 11ovmpod 7564 1 ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr ⟨0, 𝐿⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  Vcvv 3472  cop 4635  (class class class)co 7413  cmpo 7415  0cc0 11114  0cn0 12478   substr csubstr 14596   prefix cpfx 14626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-pfx 14627
This theorem is referenced by:  pfx00  14630  pfx0  14631  pfxval0  14632  pfxcl  14633  pfxmpt  14634  pfxfv  14638  pfxnd  14643  pfx1  14659  pfxswrd  14662  swrdpfx  14663  pfxpfx  14664  swrdccat  14691  pfxccatpfx1  14692  pfxccatpfx2  14693  cshw0  14750  pfxco  14795  clwwlkf1  29567  cycpmco2f1  32551
  Copyright terms: Public domain W3C validator