| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pfxval | Structured version Visualization version GIF version | ||
| Description: Value of a prefix operation. (Contributed by AV, 2-May-2020.) |
| Ref | Expression |
|---|---|
| pfxval | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr 〈0, 𝐿〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pfx 14576 | . . 3 ⊢ prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr 〈0, 𝑙〉)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr 〈0, 𝑙〉))) |
| 3 | simpl 482 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑙 = 𝐿) → 𝑠 = 𝑆) | |
| 4 | opeq2 4826 | . . . . 5 ⊢ (𝑙 = 𝐿 → 〈0, 𝑙〉 = 〈0, 𝐿〉) | |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑙 = 𝐿) → 〈0, 𝑙〉 = 〈0, 𝐿〉) |
| 6 | 3, 5 | oveq12d 7364 | . . 3 ⊢ ((𝑠 = 𝑆 ∧ 𝑙 = 𝐿) → (𝑠 substr 〈0, 𝑙〉) = (𝑆 substr 〈0, 𝐿〉)) |
| 7 | 6 | adantl 481 | . 2 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) ∧ (𝑠 = 𝑆 ∧ 𝑙 = 𝐿)) → (𝑠 substr 〈0, 𝑙〉) = (𝑆 substr 〈0, 𝐿〉)) |
| 8 | elex 3457 | . . 3 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → 𝑆 ∈ V) |
| 10 | simpr 484 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → 𝐿 ∈ ℕ0) | |
| 11 | ovexd 7381 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → (𝑆 substr 〈0, 𝐿〉) ∈ V) | |
| 12 | 2, 7, 9, 10, 11 | ovmpod 7498 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr 〈0, 𝐿〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4582 (class class class)co 7346 ∈ cmpo 7348 0cc0 11003 ℕ0cn0 12378 substr csubstr 14545 prefix cpfx 14575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-pfx 14576 |
| This theorem is referenced by: pfx00 14579 pfx0 14580 pfxval0 14581 pfxcl 14582 pfxmpt 14583 pfxfv 14587 pfxnd 14592 pfx1 14607 pfxswrd 14610 swrdpfx 14611 pfxpfx 14612 swrdccat 14639 pfxccatpfx1 14640 pfxccatpfx2 14641 cshw0 14698 pfxco 14742 clwwlkf1 30024 cycpmco2f1 33088 |
| Copyright terms: Public domain | W3C validator |