![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pfxval | Structured version Visualization version GIF version |
Description: Value of a prefix operation. (Contributed by AV, 2-May-2020.) |
Ref | Expression |
---|---|
pfxval | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr 〈0, 𝐿〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pfx 13856 | . . 3 ⊢ prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr 〈0, 𝑙〉)) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr 〈0, 𝑙〉))) |
3 | simpl 475 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑙 = 𝐿) → 𝑠 = 𝑆) | |
4 | opeq2 4679 | . . . . 5 ⊢ (𝑙 = 𝐿 → 〈0, 𝑙〉 = 〈0, 𝐿〉) | |
5 | 4 | adantl 474 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑙 = 𝐿) → 〈0, 𝑙〉 = 〈0, 𝐿〉) |
6 | 3, 5 | oveq12d 6996 | . . 3 ⊢ ((𝑠 = 𝑆 ∧ 𝑙 = 𝐿) → (𝑠 substr 〈0, 𝑙〉) = (𝑆 substr 〈0, 𝐿〉)) |
7 | 6 | adantl 474 | . 2 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) ∧ (𝑠 = 𝑆 ∧ 𝑙 = 𝐿)) → (𝑠 substr 〈0, 𝑙〉) = (𝑆 substr 〈0, 𝐿〉)) |
8 | elex 3433 | . . 3 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
9 | 8 | adantr 473 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → 𝑆 ∈ V) |
10 | simpr 477 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → 𝐿 ∈ ℕ0) | |
11 | ovexd 7012 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → (𝑆 substr 〈0, 𝐿〉) ∈ V) | |
12 | 2, 7, 9, 10, 11 | ovmpod 7120 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr 〈0, 𝐿〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 Vcvv 3415 〈cop 4448 (class class class)co 6978 ∈ cmpo 6980 0cc0 10337 ℕ0cn0 11710 substr csubstr 13806 prefix cpfx 13855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pr 5187 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3684 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4181 df-if 4352 df-sn 4443 df-pr 4445 df-op 4449 df-uni 4714 df-br 4931 df-opab 4993 df-id 5313 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-iota 6154 df-fun 6192 df-fv 6198 df-ov 6981 df-oprab 6982 df-mpo 6983 df-pfx 13856 |
This theorem is referenced by: pfx00 13859 pfx0 13860 pfxval0 13861 pfxcl 13862 pfxmpt 13863 pfxfv 13867 pfxnd 13872 pfx1 13888 pfxswrd 13892 swrdpfx 13894 pfxpfx 13896 swrdccat 13941 pfxccatpfx1 13943 pfxccatpfx2 13944 splvalpfxOLD 13965 cshw0 14021 pfxco 14065 clwwlkf1 27574 |
Copyright terms: Public domain | W3C validator |