MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxval Structured version   Visualization version   GIF version

Theorem pfxval 14314
Description: Value of a prefix operation. (Contributed by AV, 2-May-2020.)
Assertion
Ref Expression
pfxval ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr ⟨0, 𝐿⟩))

Proof of Theorem pfxval
Dummy variables 𝑙 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pfx 14312 . . 3 prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr ⟨0, 𝑙⟩))
21a1i 11 . 2 ((𝑆𝑉𝐿 ∈ ℕ0) → prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr ⟨0, 𝑙⟩)))
3 simpl 482 . . . 4 ((𝑠 = 𝑆𝑙 = 𝐿) → 𝑠 = 𝑆)
4 opeq2 4802 . . . . 5 (𝑙 = 𝐿 → ⟨0, 𝑙⟩ = ⟨0, 𝐿⟩)
54adantl 481 . . . 4 ((𝑠 = 𝑆𝑙 = 𝐿) → ⟨0, 𝑙⟩ = ⟨0, 𝐿⟩)
63, 5oveq12d 7273 . . 3 ((𝑠 = 𝑆𝑙 = 𝐿) → (𝑠 substr ⟨0, 𝑙⟩) = (𝑆 substr ⟨0, 𝐿⟩))
76adantl 481 . 2 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑠 = 𝑆𝑙 = 𝐿)) → (𝑠 substr ⟨0, 𝑙⟩) = (𝑆 substr ⟨0, 𝐿⟩))
8 elex 3440 . . 3 (𝑆𝑉𝑆 ∈ V)
98adantr 480 . 2 ((𝑆𝑉𝐿 ∈ ℕ0) → 𝑆 ∈ V)
10 simpr 484 . 2 ((𝑆𝑉𝐿 ∈ ℕ0) → 𝐿 ∈ ℕ0)
11 ovexd 7290 . 2 ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 substr ⟨0, 𝐿⟩) ∈ V)
122, 7, 9, 10, 11ovmpod 7403 1 ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr ⟨0, 𝐿⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564  (class class class)co 7255  cmpo 7257  0cc0 10802  0cn0 12163   substr csubstr 14281   prefix cpfx 14311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-pfx 14312
This theorem is referenced by:  pfx00  14315  pfx0  14316  pfxval0  14317  pfxcl  14318  pfxmpt  14319  pfxfv  14323  pfxnd  14328  pfx1  14344  pfxswrd  14347  swrdpfx  14348  pfxpfx  14349  swrdccat  14376  pfxccatpfx1  14377  pfxccatpfx2  14378  cshw0  14435  pfxco  14479  clwwlkf1  28314  cycpmco2f1  31293
  Copyright terms: Public domain W3C validator