MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpondm0 Structured version   Visualization version   GIF version

Theorem mpondm0 7673
Description: The value of an operation given by a maps-to rule is the empty set if the arguments are not contained in the base sets of the rule. (Contributed by Alexander van der Vekens, 12-Oct-2017.)
Hypothesis
Ref Expression
mpondm0.f 𝐹 = (𝑥𝑋, 𝑦𝑌𝐶)
Assertion
Ref Expression
mpondm0 (¬ (𝑉𝑋𝑊𝑌) → (𝑉𝐹𝑊) = ∅)
Distinct variable groups:   𝑥,𝑦,𝑋   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem mpondm0
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mpondm0.f . . . . 5 𝐹 = (𝑥𝑋, 𝑦𝑌𝐶)
2 df-mpo 7436 . . . . 5 (𝑥𝑋, 𝑦𝑌𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑋𝑦𝑌) ∧ 𝑧 = 𝐶)}
31, 2eqtri 2765 . . . 4 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑋𝑦𝑌) ∧ 𝑧 = 𝐶)}
43dmeqi 5915 . . 3 dom 𝐹 = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑋𝑦𝑌) ∧ 𝑧 = 𝐶)}
5 dmoprabss 7537 . . 3 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑋𝑦𝑌) ∧ 𝑧 = 𝐶)} ⊆ (𝑋 × 𝑌)
64, 5eqsstri 4030 . 2 dom 𝐹 ⊆ (𝑋 × 𝑌)
7 nssdmovg 7615 . 2 ((dom 𝐹 ⊆ (𝑋 × 𝑌) ∧ ¬ (𝑉𝑋𝑊𝑌)) → (𝑉𝐹𝑊) = ∅)
86, 7mpan 690 1 (¬ (𝑉𝑋𝑊𝑌) → (𝑉𝐹𝑊) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wss 3951  c0 4333   × cxp 5683  dom cdm 5685  (class class class)co 7431  {coprab 7432  cmpo 7433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-xp 5691  df-dm 5695  df-iota 6514  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436
This theorem is referenced by:  2mpo0  7682  elovmpt3imp  7690  el2mpocsbcl  8110  bropopvvv  8115  supp0prc  8188  brovex  8247  swrdnznd  14680  pfxnndmnd  14710  fullfunc  17953  fthfunc  17954  natfval  17994  evlval  22119  matbas0  22414  matrcl  22416  marrepfval  22566  marepvfval  22571  submafval  22585  minmar1fval  22652  hmeofval  23766  nghmfval  24743  wspthsn  29868  iswwlksnon  29873  iswspthsnon  29876  clwwlkn  30045  clwwlkneq0  30048  clwwlknon  30109  clwwlk0on0  30111  clwwlknon0  30112  naryfval  48549  naryfvalixp  48550
  Copyright terms: Public domain W3C validator