| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpondm0 | Structured version Visualization version GIF version | ||
| Description: The value of an operation given by a maps-to rule is the empty set if the arguments are not contained in the base sets of the rule. (Contributed by Alexander van der Vekens, 12-Oct-2017.) |
| Ref | Expression |
|---|---|
| mpondm0.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) |
| Ref | Expression |
|---|---|
| mpondm0 | ⊢ (¬ (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉𝐹𝑊) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpondm0.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) | |
| 2 | df-mpo 7395 | . . . . 5 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) ∧ 𝑧 = 𝐶)} | |
| 3 | 1, 2 | eqtri 2753 | . . . 4 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) ∧ 𝑧 = 𝐶)} |
| 4 | 3 | dmeqi 5871 | . . 3 ⊢ dom 𝐹 = dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) ∧ 𝑧 = 𝐶)} |
| 5 | dmoprabss 7496 | . . 3 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) ∧ 𝑧 = 𝐶)} ⊆ (𝑋 × 𝑌) | |
| 6 | 4, 5 | eqsstri 3996 | . 2 ⊢ dom 𝐹 ⊆ (𝑋 × 𝑌) |
| 7 | nssdmovg 7574 | . 2 ⊢ ((dom 𝐹 ⊆ (𝑋 × 𝑌) ∧ ¬ (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) → (𝑉𝐹𝑊) = ∅) | |
| 8 | 6, 7 | mpan 690 | 1 ⊢ (¬ (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉𝐹𝑊) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ∅c0 4299 × cxp 5639 dom cdm 5641 (class class class)co 7390 {coprab 7391 ∈ cmpo 7392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-dm 5651 df-iota 6467 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 |
| This theorem is referenced by: 2mpo0 7641 elovmpt3imp 7649 el2mpocsbcl 8067 bropopvvv 8072 supp0prc 8145 brovex 8204 swrdnznd 14614 pfxnndmnd 14644 fullfunc 17877 fthfunc 17878 natfval 17918 evlval 22009 matbas0 22304 matrcl 22306 marrepfval 22454 marepvfval 22459 submafval 22473 minmar1fval 22540 hmeofval 23652 nghmfval 24617 wspthsn 29785 iswwlksnon 29790 iswspthsnon 29793 clwwlkn 29962 clwwlkneq0 29965 clwwlknon 30026 clwwlk0on0 30028 clwwlknon0 30029 naryfval 48621 naryfvalixp 48622 oppc1stflem 49280 |
| Copyright terms: Public domain | W3C validator |