MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpondm0 Structured version   Visualization version   GIF version

Theorem mpondm0 7647
Description: The value of an operation given by a maps-to rule is the empty set if the arguments are not contained in the base sets of the rule. (Contributed by Alexander van der Vekens, 12-Oct-2017.)
Hypothesis
Ref Expression
mpondm0.f 𝐹 = (𝑥𝑋, 𝑦𝑌𝐶)
Assertion
Ref Expression
mpondm0 (¬ (𝑉𝑋𝑊𝑌) → (𝑉𝐹𝑊) = ∅)
Distinct variable groups:   𝑥,𝑦,𝑋   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem mpondm0
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mpondm0.f . . . . 5 𝐹 = (𝑥𝑋, 𝑦𝑌𝐶)
2 df-mpo 7410 . . . . 5 (𝑥𝑋, 𝑦𝑌𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑋𝑦𝑌) ∧ 𝑧 = 𝐶)}
31, 2eqtri 2758 . . . 4 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑋𝑦𝑌) ∧ 𝑧 = 𝐶)}
43dmeqi 5884 . . 3 dom 𝐹 = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑋𝑦𝑌) ∧ 𝑧 = 𝐶)}
5 dmoprabss 7511 . . 3 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑋𝑦𝑌) ∧ 𝑧 = 𝐶)} ⊆ (𝑋 × 𝑌)
64, 5eqsstri 4005 . 2 dom 𝐹 ⊆ (𝑋 × 𝑌)
7 nssdmovg 7589 . 2 ((dom 𝐹 ⊆ (𝑋 × 𝑌) ∧ ¬ (𝑉𝑋𝑊𝑌)) → (𝑉𝐹𝑊) = ∅)
86, 7mpan 690 1 (¬ (𝑉𝑋𝑊𝑌) → (𝑉𝐹𝑊) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wss 3926  c0 4308   × cxp 5652  dom cdm 5654  (class class class)co 7405  {coprab 7406  cmpo 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-dm 5664  df-iota 6484  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410
This theorem is referenced by:  2mpo0  7656  elovmpt3imp  7664  el2mpocsbcl  8084  bropopvvv  8089  supp0prc  8162  brovex  8221  swrdnznd  14660  pfxnndmnd  14690  fullfunc  17921  fthfunc  17922  natfval  17962  evlval  22053  matbas0  22348  matrcl  22350  marrepfval  22498  marepvfval  22503  submafval  22517  minmar1fval  22584  hmeofval  23696  nghmfval  24661  wspthsn  29830  iswwlksnon  29835  iswspthsnon  29838  clwwlkn  30007  clwwlkneq0  30010  clwwlknon  30071  clwwlk0on0  30073  clwwlknon0  30074  naryfval  48608  naryfvalixp  48609
  Copyright terms: Public domain W3C validator