Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpondm0 | Structured version Visualization version GIF version |
Description: The value of an operation given by a maps-to rule is the empty set if the arguments are not contained in the base sets of the rule. (Contributed by Alexander van der Vekens, 12-Oct-2017.) |
Ref | Expression |
---|---|
mpondm0.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) |
Ref | Expression |
---|---|
mpondm0 | ⊢ (¬ (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉𝐹𝑊) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpondm0.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) | |
2 | df-mpo 7342 | . . . . 5 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) ∧ 𝑧 = 𝐶)} | |
3 | 1, 2 | eqtri 2764 | . . . 4 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) ∧ 𝑧 = 𝐶)} |
4 | 3 | dmeqi 5846 | . . 3 ⊢ dom 𝐹 = dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) ∧ 𝑧 = 𝐶)} |
5 | dmoprabss 7439 | . . 3 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) ∧ 𝑧 = 𝐶)} ⊆ (𝑋 × 𝑌) | |
6 | 4, 5 | eqsstri 3966 | . 2 ⊢ dom 𝐹 ⊆ (𝑋 × 𝑌) |
7 | nssdmovg 7516 | . 2 ⊢ ((dom 𝐹 ⊆ (𝑋 × 𝑌) ∧ ¬ (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) → (𝑉𝐹𝑊) = ∅) | |
8 | 6, 7 | mpan 687 | 1 ⊢ (¬ (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉𝐹𝑊) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ⊆ wss 3898 ∅c0 4269 × cxp 5618 dom cdm 5620 (class class class)co 7337 {coprab 7338 ∈ cmpo 7339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-xp 5626 df-dm 5630 df-iota 6431 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 |
This theorem is referenced by: 2mpo0 7580 elovmpt3imp 7588 el2mpocsbcl 7993 bropopvvv 7998 supp0prc 8050 brovex 8108 swrdnznd 14453 pfxnndmnd 14483 fullfunc 17719 fthfunc 17720 natfval 17759 evlval 21411 matbas0 21663 matrcl 21665 marrepfval 21815 marepvfval 21820 submafval 21834 minmar1fval 21901 hmeofval 23015 nghmfval 23992 wspthsn 28501 iswwlksnon 28506 iswspthsnon 28509 clwwlkn 28678 clwwlkneq0 28681 clwwlknon 28742 clwwlk0on0 28744 clwwlknon0 28745 naryfval 46325 naryfvalixp 46326 |
Copyright terms: Public domain | W3C validator |