MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpondm0 Structured version   Visualization version   GIF version

Theorem mpondm0 7252
Description: The value of an operation given by a maps-to rule is the empty set if the arguments are not contained in the base sets of the rule. (Contributed by Alexander van der Vekens, 12-Oct-2017.)
Hypothesis
Ref Expression
mpondm0.f 𝐹 = (𝑥𝑋, 𝑦𝑌𝐶)
Assertion
Ref Expression
mpondm0 (¬ (𝑉𝑋𝑊𝑌) → (𝑉𝐹𝑊) = ∅)
Distinct variable groups:   𝑥,𝑦,𝑋   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem mpondm0
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mpondm0.f . . . . 5 𝐹 = (𝑥𝑋, 𝑦𝑌𝐶)
2 df-mpo 7028 . . . . 5 (𝑥𝑋, 𝑦𝑌𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑋𝑦𝑌) ∧ 𝑧 = 𝐶)}
31, 2eqtri 2821 . . . 4 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑋𝑦𝑌) ∧ 𝑧 = 𝐶)}
43dmeqi 5666 . . 3 dom 𝐹 = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑋𝑦𝑌) ∧ 𝑧 = 𝐶)}
5 dmoprabss 7119 . . 3 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑋𝑦𝑌) ∧ 𝑧 = 𝐶)} ⊆ (𝑋 × 𝑌)
64, 5eqsstri 3928 . 2 dom 𝐹 ⊆ (𝑋 × 𝑌)
7 nssdmovg 7193 . 2 ((dom 𝐹 ⊆ (𝑋 × 𝑌) ∧ ¬ (𝑉𝑋𝑊𝑌)) → (𝑉𝐹𝑊) = ∅)
86, 7mpan 686 1 (¬ (𝑉𝑋𝑊𝑌) → (𝑉𝐹𝑊) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1525  wcel 2083  wss 3865  c0 4217   × cxp 5448  dom cdm 5450  (class class class)co 7023  {coprab 7024  cmpo 7025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-br 4969  df-opab 5031  df-xp 5456  df-dm 5460  df-iota 6196  df-fv 6240  df-ov 7026  df-oprab 7027  df-mpo 7028
This theorem is referenced by:  2mpo0  7259  elovmpt3imp  7267  el2mpocsbcl  7643  bropopvvv  7648  supp0prc  7691  brovex  7746  swrdnznd  13844  pfxnndmnd  13874  fullfunc  17009  fthfunc  17010  natfval  17049  evlval  19995  matbas0  20707  matrcl  20709  marrepfval  20857  marepvfval  20862  submafval  20876  minmar1fval  20943  hmeofval  22054  nghmfval  23018  wspthsn  27312  iswwlksnon  27317  iswspthsnon  27320  clwwlkn  27490  clwwlkneq0  27493  clwwlknon  27555  clwwlk0on0  27557  clwwlknon0  27558
  Copyright terms: Public domain W3C validator