| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpondm0 | Structured version Visualization version GIF version | ||
| Description: The value of an operation given by a maps-to rule is the empty set if the arguments are not contained in the base sets of the rule. (Contributed by Alexander van der Vekens, 12-Oct-2017.) |
| Ref | Expression |
|---|---|
| mpondm0.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) |
| Ref | Expression |
|---|---|
| mpondm0 | ⊢ (¬ (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉𝐹𝑊) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpondm0.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) | |
| 2 | df-mpo 7358 | . . . . 5 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) ∧ 𝑧 = 𝐶)} | |
| 3 | 1, 2 | eqtri 2752 | . . . 4 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) ∧ 𝑧 = 𝐶)} |
| 4 | 3 | dmeqi 5851 | . . 3 ⊢ dom 𝐹 = dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) ∧ 𝑧 = 𝐶)} |
| 5 | dmoprabss 7457 | . . 3 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) ∧ 𝑧 = 𝐶)} ⊆ (𝑋 × 𝑌) | |
| 6 | 4, 5 | eqsstri 3984 | . 2 ⊢ dom 𝐹 ⊆ (𝑋 × 𝑌) |
| 7 | nssdmovg 7535 | . 2 ⊢ ((dom 𝐹 ⊆ (𝑋 × 𝑌) ∧ ¬ (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) → (𝑉𝐹𝑊) = ∅) | |
| 8 | 6, 7 | mpan 690 | 1 ⊢ (¬ (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉𝐹𝑊) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ∅c0 4286 × cxp 5621 dom cdm 5623 (class class class)co 7353 {coprab 7354 ∈ cmpo 7355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-dm 5633 df-iota 6442 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 |
| This theorem is referenced by: 2mpo0 7602 elovmpt3imp 7610 el2mpocsbcl 8025 bropopvvv 8030 supp0prc 8103 brovex 8162 swrdnznd 14567 pfxnndmnd 14597 fullfunc 17833 fthfunc 17834 natfval 17874 evlval 22018 matbas0 22313 matrcl 22315 marrepfval 22463 marepvfval 22468 submafval 22482 minmar1fval 22549 hmeofval 23661 nghmfval 24626 wspthsn 29811 iswwlksnon 29816 iswspthsnon 29819 clwwlkn 29988 clwwlkneq0 29991 clwwlknon 30052 clwwlk0on0 30054 clwwlknon0 30055 naryfval 48614 naryfvalixp 48615 oppc1stflem 49273 |
| Copyright terms: Public domain | W3C validator |