| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpondm0 | Structured version Visualization version GIF version | ||
| Description: The value of an operation given by a maps-to rule is the empty set if the arguments are not contained in the base sets of the rule. (Contributed by Alexander van der Vekens, 12-Oct-2017.) |
| Ref | Expression |
|---|---|
| mpondm0.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) |
| Ref | Expression |
|---|---|
| mpondm0 | ⊢ (¬ (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉𝐹𝑊) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpondm0.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) | |
| 2 | df-mpo 7357 | . . . . 5 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) ∧ 𝑧 = 𝐶)} | |
| 3 | 1, 2 | eqtri 2756 | . . . 4 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) ∧ 𝑧 = 𝐶)} |
| 4 | 3 | dmeqi 5848 | . . 3 ⊢ dom 𝐹 = dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) ∧ 𝑧 = 𝐶)} |
| 5 | dmoprabss 7456 | . . 3 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) ∧ 𝑧 = 𝐶)} ⊆ (𝑋 × 𝑌) | |
| 6 | 4, 5 | eqsstri 3977 | . 2 ⊢ dom 𝐹 ⊆ (𝑋 × 𝑌) |
| 7 | nssdmovg 7534 | . 2 ⊢ ((dom 𝐹 ⊆ (𝑋 × 𝑌) ∧ ¬ (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) → (𝑉𝐹𝑊) = ∅) | |
| 8 | 6, 7 | mpan 690 | 1 ⊢ (¬ (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉𝐹𝑊) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ∅c0 4282 × cxp 5617 dom cdm 5619 (class class class)co 7352 {coprab 7353 ∈ cmpo 7354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-dm 5629 df-iota 6442 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 |
| This theorem is referenced by: 2mpo0 7601 elovmpt3imp 7609 el2mpocsbcl 8021 bropopvvv 8026 supp0prc 8099 brovex 8158 swrdnznd 14552 pfxnndmnd 14582 fullfunc 17817 fthfunc 17818 natfval 17858 evlval 22031 matbas0 22326 matrcl 22328 marrepfval 22476 marepvfval 22481 submafval 22495 minmar1fval 22562 hmeofval 23674 nghmfval 24638 wspthsn 29828 iswwlksnon 29833 iswspthsnon 29836 clwwlkn 30008 clwwlkneq0 30011 clwwlknon 30072 clwwlk0on0 30074 clwwlknon0 30075 fineqvnttrclselem1 35162 naryfval 48753 naryfvalixp 48754 oppc1stflem 49412 |
| Copyright terms: Public domain | W3C validator |