![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltpnf | Structured version Visualization version GIF version |
Description: Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
ltpnf | ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . 4 ⊢ +∞ = +∞ | |
2 | orc 866 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ +∞ = +∞) → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) | |
3 | 1, 2 | mpan2 690 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) |
4 | 3 | olcd 873 | . 2 ⊢ (𝐴 ∈ ℝ → ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ)))) |
5 | rexr 11260 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
6 | pnfxr 11268 | . . 3 ⊢ +∞ ∈ ℝ* | |
7 | ltxr 13095 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) | |
8 | 5, 6, 7 | sylancl 587 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) |
9 | 4, 8 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 class class class wbr 5149 ℝcr 11109 <ℝ cltrr 11114 +∞cpnf 11245 -∞cmnf 11246 ℝ*cxr 11247 < clt 11248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-xp 5683 df-pnf 11250 df-xr 11252 df-ltxr 11253 |
This theorem is referenced by: ltpnfd 13101 0ltpnf 13102 xrlttri 13118 xrlttr 13119 xrrebnd 13147 xrre 13148 qbtwnxr 13179 xnn0lem1lt 13223 xrinfmsslem 13287 xrub 13291 supxrunb1 13298 supxrunb2 13299 dfrp2 13373 elioc2 13387 elicc2 13389 ioomax 13399 ioopos 13401 elioopnf 13420 elicopnf 13422 difreicc 13461 hashbnd 14296 hashv01gt1 14305 fprodge0 15937 fprodge1 15939 pcadd 16822 ramubcl 16951 rge0srg 21016 mnfnei 22725 icopnfcld 24284 iocmnfcld 24285 xrtgioo 24322 xrge0tsms 24350 ioombl1lem4 25078 icombl1 25080 mbfmax 25166 upgrfi 28351 topnfbey 29722 isblo3i 30054 htthlem 30170 xlt2addrd 31971 fsumrp0cl 32196 xrge0tsmsd 32209 pnfinf 32329 xrge0slmod 32463 xrge0iifcnv 32913 xrge0iifiso 32915 xrge0iifhom 32917 lmxrge0 32932 esumcst 33061 esumcvgre 33089 voliune 33227 volfiniune 33228 sxbrsigalem0 33270 orvcgteel 33466 dstfrvclim1 33476 itg2addnclem2 36540 asindmre 36571 dvasin 36572 dvacos 36573 rfcnpre3 43717 supxrgere 44043 supxrgelem 44047 xrlexaddrp 44062 infxr 44077 xrpnf 44196 limsupre 44357 limsuppnflem 44426 liminflelimsupuz 44501 limsupub2 44528 icccncfext 44603 fourierdlem111 44933 fourierdlem113 44935 fouriersw 44947 sge0iunmptlemre 45131 sge0rpcpnf 45137 sge0xaddlem1 45149 meaiuninclem 45196 hoidmvlelem5 45315 ovolval5lem1 45368 pimltpnff 45419 iccpartiltu 46090 itscnhlinecirc02p 47471 |
Copyright terms: Public domain | W3C validator |