![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltpnf | Structured version Visualization version GIF version |
Description: Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
ltpnf | ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 ⊢ +∞ = +∞ | |
2 | orc 865 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ +∞ = +∞) → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) | |
3 | 1, 2 | mpan2 689 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) |
4 | 3 | olcd 872 | . 2 ⊢ (𝐴 ∈ ℝ → ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ)))) |
5 | rexr 11256 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
6 | pnfxr 11264 | . . 3 ⊢ +∞ ∈ ℝ* | |
7 | ltxr 13091 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) | |
8 | 5, 6, 7 | sylancl 586 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) |
9 | 4, 8 | mpbird 256 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 class class class wbr 5147 ℝcr 11105 <ℝ cltrr 11110 +∞cpnf 11241 -∞cmnf 11242 ℝ*cxr 11243 < clt 11244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-xp 5681 df-pnf 11246 df-xr 11248 df-ltxr 11249 |
This theorem is referenced by: ltpnfd 13097 0ltpnf 13098 xrlttri 13114 xrlttr 13115 xrrebnd 13143 xrre 13144 qbtwnxr 13175 xnn0lem1lt 13219 xrinfmsslem 13283 xrub 13287 supxrunb1 13294 supxrunb2 13295 dfrp2 13369 elioc2 13383 elicc2 13385 ioomax 13395 ioopos 13397 elioopnf 13416 elicopnf 13418 difreicc 13457 hashbnd 14292 hashv01gt1 14301 fprodge0 15933 fprodge1 15935 pcadd 16818 ramubcl 16947 rge0srg 21008 mnfnei 22716 icopnfcld 24275 iocmnfcld 24276 xrtgioo 24313 xrge0tsms 24341 ioombl1lem4 25069 icombl1 25071 mbfmax 25157 upgrfi 28340 topnfbey 29711 isblo3i 30041 htthlem 30157 xlt2addrd 31958 fsumrp0cl 32183 xrge0tsmsd 32196 pnfinf 32316 xrge0slmod 32451 xrge0iifcnv 32901 xrge0iifiso 32903 xrge0iifhom 32905 lmxrge0 32920 esumcst 33049 esumcvgre 33077 voliune 33215 volfiniune 33216 sxbrsigalem0 33258 orvcgteel 33454 dstfrvclim1 33464 itg2addnclem2 36528 asindmre 36559 dvasin 36560 dvacos 36561 rfcnpre3 43702 supxrgere 44029 supxrgelem 44033 xrlexaddrp 44048 infxr 44063 xrpnf 44182 limsupre 44343 limsuppnflem 44412 liminflelimsupuz 44487 limsupub2 44514 icccncfext 44589 fourierdlem111 44919 fourierdlem113 44921 fouriersw 44933 sge0iunmptlemre 45117 sge0rpcpnf 45123 sge0xaddlem1 45135 meaiuninclem 45182 hoidmvlelem5 45301 ovolval5lem1 45354 pimltpnff 45405 iccpartiltu 46076 itscnhlinecirc02p 47424 |
Copyright terms: Public domain | W3C validator |