| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltpnf | Structured version Visualization version GIF version | ||
| Description: Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| ltpnf | ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ +∞ = +∞ | |
| 2 | orc 867 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ +∞ = +∞) → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) |
| 4 | 3 | olcd 874 | . 2 ⊢ (𝐴 ∈ ℝ → ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ)))) |
| 5 | rexr 11196 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 6 | pnfxr 11204 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 7 | ltxr 13051 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) | |
| 8 | 5, 6, 7 | sylancl 586 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) |
| 9 | 4, 8 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ℝcr 11043 <ℝ cltrr 11048 +∞cpnf 11181 -∞cmnf 11182 ℝ*cxr 11183 < clt 11184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-pnf 11186 df-xr 11188 df-ltxr 11189 |
| This theorem is referenced by: ltpnfd 13057 0ltpnf 13058 xrlttri 13075 xrlttr 13076 xrrebnd 13104 xrre 13105 qbtwnxr 13136 xnn0lem1lt 13180 xrinfmsslem 13244 xrub 13248 supxrunb1 13255 supxrunb2 13256 dfrp2 13331 elioc2 13346 elicc2 13348 ioomax 13359 ioopos 13361 elioopnf 13380 elicopnf 13382 difreicc 13421 hashbnd 14277 hashv01gt1 14286 fprodge0 15935 fprodge1 15937 pcadd 16836 ramubcl 16965 rge0srg 21380 mnfnei 23141 icopnfcld 24688 iocmnfcld 24689 xrtgioo 24728 xrge0tsms 24756 ioombl1lem4 25495 icombl1 25497 mbfmax 25583 upgrfi 29071 topnfbey 30448 isblo3i 30780 htthlem 30896 xlt2addrd 32732 fsumrp0cl 33005 xrge0tsmsd 33045 pnfinf 33152 xrge0slmod 33312 xrge0iifcnv 33916 xrge0iifiso 33918 xrge0iifhom 33920 lmxrge0 33935 esumcst 34046 esumcvgre 34074 voliune 34212 volfiniune 34213 sxbrsigalem0 34255 orvcgteel 34452 dstfrvclim1 34462 itg2addnclem2 37659 asindmre 37690 dvasin 37691 dvacos 37692 rfcnpre3 45020 supxrgere 45322 supxrgelem 45326 xrlexaddrp 45341 infxr 45356 xrpnf 45474 limsupre 45632 limsuppnflem 45701 liminflelimsupuz 45776 limsupub2 45803 icccncfext 45878 fourierdlem111 46208 fourierdlem113 46210 fouriersw 46222 sge0iunmptlemre 46406 sge0rpcpnf 46412 sge0xaddlem1 46424 meaiuninclem 46471 hoidmvlelem5 46590 ovolval5lem1 46643 pimltpnff 46694 iccpartiltu 47416 itscnhlinecirc02p 48767 |
| Copyright terms: Public domain | W3C validator |