| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltpnf | Structured version Visualization version GIF version | ||
| Description: Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| ltpnf | ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ +∞ = +∞ | |
| 2 | orc 867 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ +∞ = +∞) → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) |
| 4 | 3 | olcd 874 | . 2 ⊢ (𝐴 ∈ ℝ → ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ)))) |
| 5 | rexr 11286 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 6 | pnfxr 11294 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 7 | ltxr 13136 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) | |
| 8 | 5, 6, 7 | sylancl 586 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) |
| 9 | 4, 8 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ℝcr 11133 <ℝ cltrr 11138 +∞cpnf 11271 -∞cmnf 11272 ℝ*cxr 11273 < clt 11274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-pnf 11276 df-xr 11278 df-ltxr 11279 |
| This theorem is referenced by: ltpnfd 13142 0ltpnf 13143 xrlttri 13160 xrlttr 13161 xrrebnd 13189 xrre 13190 qbtwnxr 13221 xnn0lem1lt 13265 xrinfmsslem 13329 xrub 13333 supxrunb1 13340 supxrunb2 13341 dfrp2 13416 elioc2 13431 elicc2 13433 ioomax 13444 ioopos 13446 elioopnf 13465 elicopnf 13467 difreicc 13506 hashbnd 14359 hashv01gt1 14368 fprodge0 16014 fprodge1 16016 pcadd 16914 ramubcl 17043 rge0srg 21411 mnfnei 23164 icopnfcld 24711 iocmnfcld 24712 xrtgioo 24751 xrge0tsms 24779 ioombl1lem4 25519 icombl1 25521 mbfmax 25607 upgrfi 29075 topnfbey 30455 isblo3i 30787 htthlem 30903 xlt2addrd 32741 fsumrp0cl 33021 xrge0tsmsd 33061 pnfinf 33186 xrge0slmod 33368 xrge0iifcnv 33969 xrge0iifiso 33971 xrge0iifhom 33973 lmxrge0 33988 esumcst 34099 esumcvgre 34127 voliune 34265 volfiniune 34266 sxbrsigalem0 34308 orvcgteel 34505 dstfrvclim1 34515 itg2addnclem2 37701 asindmre 37732 dvasin 37733 dvacos 37734 rfcnpre3 45037 supxrgere 45340 supxrgelem 45344 xrlexaddrp 45359 infxr 45374 xrpnf 45492 limsupre 45650 limsuppnflem 45719 liminflelimsupuz 45794 limsupub2 45821 icccncfext 45896 fourierdlem111 46226 fourierdlem113 46228 fouriersw 46240 sge0iunmptlemre 46424 sge0rpcpnf 46430 sge0xaddlem1 46442 meaiuninclem 46489 hoidmvlelem5 46608 ovolval5lem1 46661 pimltpnff 46712 iccpartiltu 47416 itscnhlinecirc02p 48745 |
| Copyright terms: Public domain | W3C validator |