| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltpnf | Structured version Visualization version GIF version | ||
| Description: Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| ltpnf | ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ +∞ = +∞ | |
| 2 | orc 867 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ +∞ = +∞) → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) |
| 4 | 3 | olcd 874 | . 2 ⊢ (𝐴 ∈ ℝ → ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ)))) |
| 5 | rexr 11220 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 6 | pnfxr 11228 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 7 | ltxr 13075 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) | |
| 8 | 5, 6, 7 | sylancl 586 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) |
| 9 | 4, 8 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ℝcr 11067 <ℝ cltrr 11072 +∞cpnf 11205 -∞cmnf 11206 ℝ*cxr 11207 < clt 11208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-pnf 11210 df-xr 11212 df-ltxr 11213 |
| This theorem is referenced by: ltpnfd 13081 0ltpnf 13082 xrlttri 13099 xrlttr 13100 xrrebnd 13128 xrre 13129 qbtwnxr 13160 xnn0lem1lt 13204 xrinfmsslem 13268 xrub 13272 supxrunb1 13279 supxrunb2 13280 dfrp2 13355 elioc2 13370 elicc2 13372 ioomax 13383 ioopos 13385 elioopnf 13404 elicopnf 13406 difreicc 13445 hashbnd 14301 hashv01gt1 14310 fprodge0 15959 fprodge1 15961 pcadd 16860 ramubcl 16989 rge0srg 21355 mnfnei 23108 icopnfcld 24655 iocmnfcld 24656 xrtgioo 24695 xrge0tsms 24723 ioombl1lem4 25462 icombl1 25464 mbfmax 25550 upgrfi 29018 topnfbey 30398 isblo3i 30730 htthlem 30846 xlt2addrd 32682 fsumrp0cl 32962 xrge0tsmsd 33002 pnfinf 33137 xrge0slmod 33319 xrge0iifcnv 33923 xrge0iifiso 33925 xrge0iifhom 33927 lmxrge0 33942 esumcst 34053 esumcvgre 34081 voliune 34219 volfiniune 34220 sxbrsigalem0 34262 orvcgteel 34459 dstfrvclim1 34469 itg2addnclem2 37666 asindmre 37697 dvasin 37698 dvacos 37699 rfcnpre3 45027 supxrgere 45329 supxrgelem 45333 xrlexaddrp 45348 infxr 45363 xrpnf 45481 limsupre 45639 limsuppnflem 45708 liminflelimsupuz 45783 limsupub2 45810 icccncfext 45885 fourierdlem111 46215 fourierdlem113 46217 fouriersw 46229 sge0iunmptlemre 46413 sge0rpcpnf 46419 sge0xaddlem1 46431 meaiuninclem 46478 hoidmvlelem5 46597 ovolval5lem1 46650 pimltpnff 46701 iccpartiltu 47423 itscnhlinecirc02p 48774 |
| Copyright terms: Public domain | W3C validator |