| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltpnf | Structured version Visualization version GIF version | ||
| Description: Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| ltpnf | ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ +∞ = +∞ | |
| 2 | orc 867 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ +∞ = +∞) → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) |
| 4 | 3 | olcd 874 | . 2 ⊢ (𝐴 ∈ ℝ → ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ)))) |
| 5 | rexr 11158 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 6 | pnfxr 11166 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 7 | ltxr 13014 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) | |
| 8 | 5, 6, 7 | sylancl 586 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) |
| 9 | 4, 8 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ℝcr 11005 <ℝ cltrr 11010 +∞cpnf 11143 -∞cmnf 11144 ℝ*cxr 11145 < clt 11146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-pnf 11148 df-xr 11150 df-ltxr 11151 |
| This theorem is referenced by: ltpnfd 13020 0ltpnf 13021 xrlttri 13038 xrlttr 13039 xrrebnd 13067 xrre 13068 qbtwnxr 13099 xnn0lem1lt 13143 xrinfmsslem 13207 xrub 13211 supxrunb1 13218 supxrunb2 13219 dfrp2 13294 elioc2 13309 elicc2 13311 ioomax 13322 ioopos 13324 elioopnf 13343 elicopnf 13345 difreicc 13384 hashbnd 14243 hashv01gt1 14252 fprodge0 15900 fprodge1 15902 pcadd 16801 ramubcl 16930 rge0srg 21375 mnfnei 23136 icopnfcld 24682 iocmnfcld 24683 xrtgioo 24722 xrge0tsms 24750 ioombl1lem4 25489 icombl1 25491 mbfmax 25577 upgrfi 29069 topnfbey 30449 isblo3i 30781 htthlem 30897 xlt2addrd 32742 fsumrp0cl 33002 xrge0tsmsd 33042 pnfinf 33152 xrge0slmod 33313 xrge0iifcnv 33946 xrge0iifiso 33948 xrge0iifhom 33950 lmxrge0 33965 esumcst 34076 esumcvgre 34104 voliune 34242 volfiniune 34243 sxbrsigalem0 34284 orvcgteel 34481 dstfrvclim1 34491 itg2addnclem2 37720 asindmre 37751 dvasin 37752 dvacos 37753 rfcnpre3 45078 supxrgere 45380 supxrgelem 45384 xrlexaddrp 45399 infxr 45413 xrpnf 45531 limsupre 45687 limsuppnflem 45756 liminflelimsupuz 45831 limsupub2 45858 icccncfext 45933 fourierdlem111 46263 fourierdlem113 46265 fouriersw 46277 sge0iunmptlemre 46461 sge0rpcpnf 46467 sge0xaddlem1 46479 meaiuninclem 46526 hoidmvlelem5 46645 ovolval5lem1 46698 pimltpnff 46749 iccpartiltu 47461 itscnhlinecirc02p 48825 |
| Copyright terms: Public domain | W3C validator |