| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltpnf | Structured version Visualization version GIF version | ||
| Description: Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| ltpnf | ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ +∞ = +∞ | |
| 2 | orc 867 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ +∞ = +∞) → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) |
| 4 | 3 | olcd 874 | . 2 ⊢ (𝐴 ∈ ℝ → ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ)))) |
| 5 | rexr 11196 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 6 | pnfxr 11204 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 7 | ltxr 13051 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) | |
| 8 | 5, 6, 7 | sylancl 586 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) |
| 9 | 4, 8 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ℝcr 11043 <ℝ cltrr 11048 +∞cpnf 11181 -∞cmnf 11182 ℝ*cxr 11183 < clt 11184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-pnf 11186 df-xr 11188 df-ltxr 11189 |
| This theorem is referenced by: ltpnfd 13057 0ltpnf 13058 xrlttri 13075 xrlttr 13076 xrrebnd 13104 xrre 13105 qbtwnxr 13136 xnn0lem1lt 13180 xrinfmsslem 13244 xrub 13248 supxrunb1 13255 supxrunb2 13256 dfrp2 13331 elioc2 13346 elicc2 13348 ioomax 13359 ioopos 13361 elioopnf 13380 elicopnf 13382 difreicc 13421 hashbnd 14277 hashv01gt1 14286 fprodge0 15935 fprodge1 15937 pcadd 16836 ramubcl 16965 rge0srg 21331 mnfnei 23084 icopnfcld 24631 iocmnfcld 24632 xrtgioo 24671 xrge0tsms 24699 ioombl1lem4 25438 icombl1 25440 mbfmax 25526 upgrfi 28994 topnfbey 30371 isblo3i 30703 htthlem 30819 xlt2addrd 32655 fsumrp0cl 32935 xrge0tsmsd 32975 pnfinf 33110 xrge0slmod 33292 xrge0iifcnv 33896 xrge0iifiso 33898 xrge0iifhom 33900 lmxrge0 33915 esumcst 34026 esumcvgre 34054 voliune 34192 volfiniune 34193 sxbrsigalem0 34235 orvcgteel 34432 dstfrvclim1 34442 itg2addnclem2 37639 asindmre 37670 dvasin 37671 dvacos 37672 rfcnpre3 45000 supxrgere 45302 supxrgelem 45306 xrlexaddrp 45321 infxr 45336 xrpnf 45454 limsupre 45612 limsuppnflem 45681 liminflelimsupuz 45756 limsupub2 45783 icccncfext 45858 fourierdlem111 46188 fourierdlem113 46190 fouriersw 46202 sge0iunmptlemre 46386 sge0rpcpnf 46392 sge0xaddlem1 46404 meaiuninclem 46451 hoidmvlelem5 46570 ovolval5lem1 46623 pimltpnff 46674 iccpartiltu 47396 itscnhlinecirc02p 48747 |
| Copyright terms: Public domain | W3C validator |