| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltpnf | Structured version Visualization version GIF version | ||
| Description: Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| ltpnf | ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ +∞ = +∞ | |
| 2 | orc 867 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ +∞ = +∞) → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) |
| 4 | 3 | olcd 874 | . 2 ⊢ (𝐴 ∈ ℝ → ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ)))) |
| 5 | rexr 11308 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 6 | pnfxr 11316 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 7 | ltxr 13158 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) | |
| 8 | 5, 6, 7 | sylancl 586 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) |
| 9 | 4, 8 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 class class class wbr 5142 ℝcr 11155 <ℝ cltrr 11160 +∞cpnf 11293 -∞cmnf 11294 ℝ*cxr 11295 < clt 11296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-xp 5690 df-pnf 11298 df-xr 11300 df-ltxr 11301 |
| This theorem is referenced by: ltpnfd 13164 0ltpnf 13165 xrlttri 13182 xrlttr 13183 xrrebnd 13211 xrre 13212 qbtwnxr 13243 xnn0lem1lt 13287 xrinfmsslem 13351 xrub 13355 supxrunb1 13362 supxrunb2 13363 dfrp2 13437 elioc2 13451 elicc2 13453 ioomax 13463 ioopos 13465 elioopnf 13484 elicopnf 13486 difreicc 13525 hashbnd 14376 hashv01gt1 14385 fprodge0 16030 fprodge1 16032 pcadd 16928 ramubcl 17057 rge0srg 21457 mnfnei 23230 icopnfcld 24789 iocmnfcld 24790 xrtgioo 24829 xrge0tsms 24857 ioombl1lem4 25597 icombl1 25599 mbfmax 25685 upgrfi 29109 topnfbey 30489 isblo3i 30821 htthlem 30937 xlt2addrd 32763 fsumrp0cl 33027 xrge0tsmsd 33066 pnfinf 33191 xrge0slmod 33377 xrge0iifcnv 33933 xrge0iifiso 33935 xrge0iifhom 33937 lmxrge0 33952 esumcst 34065 esumcvgre 34093 voliune 34231 volfiniune 34232 sxbrsigalem0 34274 orvcgteel 34471 dstfrvclim1 34481 itg2addnclem2 37680 asindmre 37711 dvasin 37712 dvacos 37713 rfcnpre3 45043 supxrgere 45349 supxrgelem 45353 xrlexaddrp 45368 infxr 45383 xrpnf 45501 limsupre 45661 limsuppnflem 45730 liminflelimsupuz 45805 limsupub2 45832 icccncfext 45907 fourierdlem111 46237 fourierdlem113 46239 fouriersw 46251 sge0iunmptlemre 46435 sge0rpcpnf 46441 sge0xaddlem1 46453 meaiuninclem 46500 hoidmvlelem5 46619 ovolval5lem1 46672 pimltpnff 46723 iccpartiltu 47414 itscnhlinecirc02p 48711 |
| Copyright terms: Public domain | W3C validator |