![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltpnf | Structured version Visualization version GIF version |
Description: Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
ltpnf | ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . 4 ⊢ +∞ = +∞ | |
2 | orc 867 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ +∞ = +∞) → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) | |
3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) |
4 | 3 | olcd 874 | . 2 ⊢ (𝐴 ∈ ℝ → ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ)))) |
5 | rexr 11305 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
6 | pnfxr 11313 | . . 3 ⊢ +∞ ∈ ℝ* | |
7 | ltxr 13155 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) | |
8 | 5, 6, 7 | sylancl 586 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) |
9 | 4, 8 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ℝcr 11152 <ℝ cltrr 11157 +∞cpnf 11290 -∞cmnf 11291 ℝ*cxr 11292 < clt 11293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-pnf 11295 df-xr 11297 df-ltxr 11298 |
This theorem is referenced by: ltpnfd 13161 0ltpnf 13162 xrlttri 13178 xrlttr 13179 xrrebnd 13207 xrre 13208 qbtwnxr 13239 xnn0lem1lt 13283 xrinfmsslem 13347 xrub 13351 supxrunb1 13358 supxrunb2 13359 dfrp2 13433 elioc2 13447 elicc2 13449 ioomax 13459 ioopos 13461 elioopnf 13480 elicopnf 13482 difreicc 13521 hashbnd 14372 hashv01gt1 14381 fprodge0 16026 fprodge1 16028 pcadd 16923 ramubcl 17052 rge0srg 21474 mnfnei 23245 icopnfcld 24804 iocmnfcld 24805 xrtgioo 24842 xrge0tsms 24870 ioombl1lem4 25610 icombl1 25612 mbfmax 25698 upgrfi 29123 topnfbey 30498 isblo3i 30830 htthlem 30946 xlt2addrd 32769 fsumrp0cl 33009 xrge0tsmsd 33048 pnfinf 33173 xrge0slmod 33356 xrge0iifcnv 33894 xrge0iifiso 33896 xrge0iifhom 33898 lmxrge0 33913 esumcst 34044 esumcvgre 34072 voliune 34210 volfiniune 34211 sxbrsigalem0 34253 orvcgteel 34449 dstfrvclim1 34459 itg2addnclem2 37659 asindmre 37690 dvasin 37691 dvacos 37692 rfcnpre3 44971 supxrgere 45283 supxrgelem 45287 xrlexaddrp 45302 infxr 45317 xrpnf 45436 limsupre 45597 limsuppnflem 45666 liminflelimsupuz 45741 limsupub2 45768 icccncfext 45843 fourierdlem111 46173 fourierdlem113 46175 fouriersw 46187 sge0iunmptlemre 46371 sge0rpcpnf 46377 sge0xaddlem1 46389 meaiuninclem 46436 hoidmvlelem5 46555 ovolval5lem1 46608 pimltpnff 46659 iccpartiltu 47347 itscnhlinecirc02p 48635 |
Copyright terms: Public domain | W3C validator |