| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltpnf | Structured version Visualization version GIF version | ||
| Description: Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| ltpnf | ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ +∞ = +∞ | |
| 2 | orc 867 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ +∞ = +∞) → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) | |
| 3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) |
| 4 | 3 | olcd 874 | . 2 ⊢ (𝐴 ∈ ℝ → ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ)))) |
| 5 | rexr 11161 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 6 | pnfxr 11169 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 7 | ltxr 13017 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) | |
| 8 | 5, 6, 7 | sylancl 586 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) |
| 9 | 4, 8 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ℝcr 11008 <ℝ cltrr 11013 +∞cpnf 11146 -∞cmnf 11147 ℝ*cxr 11148 < clt 11149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-pnf 11151 df-xr 11153 df-ltxr 11154 |
| This theorem is referenced by: ltpnfd 13023 0ltpnf 13024 xrlttri 13041 xrlttr 13042 xrrebnd 13070 xrre 13071 qbtwnxr 13102 xnn0lem1lt 13146 xrinfmsslem 13210 xrub 13214 supxrunb1 13221 supxrunb2 13222 dfrp2 13297 elioc2 13312 elicc2 13314 ioomax 13325 ioopos 13327 elioopnf 13346 elicopnf 13348 difreicc 13387 hashbnd 14243 hashv01gt1 14252 fprodge0 15900 fprodge1 15902 pcadd 16801 ramubcl 16930 rge0srg 21345 mnfnei 23106 icopnfcld 24653 iocmnfcld 24654 xrtgioo 24693 xrge0tsms 24721 ioombl1lem4 25460 icombl1 25462 mbfmax 25548 upgrfi 29036 topnfbey 30413 isblo3i 30745 htthlem 30861 xlt2addrd 32702 fsumrp0cl 32975 xrge0tsmsd 33015 pnfinf 33125 xrge0slmod 33285 xrge0iifcnv 33900 xrge0iifiso 33902 xrge0iifhom 33904 lmxrge0 33919 esumcst 34030 esumcvgre 34058 voliune 34196 volfiniune 34197 sxbrsigalem0 34239 orvcgteel 34436 dstfrvclim1 34446 itg2addnclem2 37652 asindmre 37683 dvasin 37684 dvacos 37685 rfcnpre3 45011 supxrgere 45313 supxrgelem 45317 xrlexaddrp 45332 infxr 45346 xrpnf 45464 limsupre 45622 limsuppnflem 45691 liminflelimsupuz 45766 limsupub2 45793 icccncfext 45868 fourierdlem111 46198 fourierdlem113 46200 fouriersw 46212 sge0iunmptlemre 46396 sge0rpcpnf 46402 sge0xaddlem1 46414 meaiuninclem 46461 hoidmvlelem5 46580 ovolval5lem1 46633 pimltpnff 46684 iccpartiltu 47406 itscnhlinecirc02p 48770 |
| Copyright terms: Public domain | W3C validator |