Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltpnf | Structured version Visualization version GIF version |
Description: Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
ltpnf | ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ +∞ = +∞ | |
2 | orc 863 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ +∞ = +∞) → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) | |
3 | 1, 2 | mpan2 687 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) |
4 | 3 | olcd 870 | . 2 ⊢ (𝐴 ∈ ℝ → ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ)))) |
5 | rexr 10952 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
6 | pnfxr 10960 | . . 3 ⊢ +∞ ∈ ℝ* | |
7 | ltxr 12780 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) | |
8 | 5, 6, 7 | sylancl 585 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) |
9 | 4, 8 | mpbird 256 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ℝcr 10801 <ℝ cltrr 10806 +∞cpnf 10937 -∞cmnf 10938 ℝ*cxr 10939 < clt 10940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-pnf 10942 df-xr 10944 df-ltxr 10945 |
This theorem is referenced by: ltpnfd 12786 0ltpnf 12787 xrlttri 12802 xrlttr 12803 xrrebnd 12831 xrre 12832 qbtwnxr 12863 xnn0lem1lt 12907 xrinfmsslem 12971 xrub 12975 supxrunb1 12982 supxrunb2 12983 dfrp2 13057 elioc2 13071 elicc2 13073 ioomax 13083 ioopos 13085 elioopnf 13104 elicopnf 13106 difreicc 13145 hashbnd 13978 hashv01gt1 13987 fprodge0 15631 fprodge1 15633 pcadd 16518 ramubcl 16647 rge0srg 20581 mnfnei 22280 icopnfcld 23837 iocmnfcld 23838 xrtgioo 23875 xrge0tsms 23903 ioombl1lem4 24630 icombl1 24632 mbfmax 24718 upgrfi 27364 topnfbey 28734 isblo3i 29064 htthlem 29180 xlt2addrd 30983 fsumrp0cl 31206 xrge0tsmsd 31219 pnfinf 31339 xrge0slmod 31450 xrge0iifcnv 31785 xrge0iifiso 31787 xrge0iifhom 31789 lmxrge0 31804 esumcst 31931 esumcvgre 31959 voliune 32097 volfiniune 32098 sxbrsigalem0 32138 orvcgteel 32334 dstfrvclim1 32344 itg2addnclem2 35756 asindmre 35787 dvasin 35788 dvacos 35789 rfcnpre3 42465 supxrgere 42762 supxrgelem 42766 xrlexaddrp 42781 infxr 42796 xrpnf 42916 limsupre 43072 limsuppnflem 43141 liminflelimsupuz 43216 limsupub2 43243 icccncfext 43318 fourierdlem111 43648 fourierdlem113 43650 fouriersw 43662 sge0iunmptlemre 43843 sge0rpcpnf 43849 sge0xaddlem1 43861 meaiuninclem 43908 hoidmvlelem5 44027 ovolval5lem1 44080 pimltpnf 44130 iccpartiltu 44762 itscnhlinecirc02p 46019 |
Copyright terms: Public domain | W3C validator |