![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltpnf | Structured version Visualization version GIF version |
Description: Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
ltpnf | ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ +∞ = +∞ | |
2 | orc 866 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ +∞ = +∞) → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) | |
3 | 1, 2 | mpan2 690 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) |
4 | 3 | olcd 873 | . 2 ⊢ (𝐴 ∈ ℝ → ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ)))) |
5 | rexr 11336 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
6 | pnfxr 11344 | . . 3 ⊢ +∞ ∈ ℝ* | |
7 | ltxr 13178 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) | |
8 | 5, 6, 7 | sylancl 585 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) |
9 | 4, 8 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ℝcr 11183 <ℝ cltrr 11188 +∞cpnf 11321 -∞cmnf 11322 ℝ*cxr 11323 < clt 11324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-pnf 11326 df-xr 11328 df-ltxr 11329 |
This theorem is referenced by: ltpnfd 13184 0ltpnf 13185 xrlttri 13201 xrlttr 13202 xrrebnd 13230 xrre 13231 qbtwnxr 13262 xnn0lem1lt 13306 xrinfmsslem 13370 xrub 13374 supxrunb1 13381 supxrunb2 13382 dfrp2 13456 elioc2 13470 elicc2 13472 ioomax 13482 ioopos 13484 elioopnf 13503 elicopnf 13505 difreicc 13544 hashbnd 14385 hashv01gt1 14394 fprodge0 16041 fprodge1 16043 pcadd 16936 ramubcl 17065 rge0srg 21479 mnfnei 23250 icopnfcld 24809 iocmnfcld 24810 xrtgioo 24847 xrge0tsms 24875 ioombl1lem4 25615 icombl1 25617 mbfmax 25703 upgrfi 29126 topnfbey 30501 isblo3i 30833 htthlem 30949 xlt2addrd 32765 fsumrp0cl 33007 xrge0tsmsd 33041 pnfinf 33163 xrge0slmod 33341 xrge0iifcnv 33879 xrge0iifiso 33881 xrge0iifhom 33883 lmxrge0 33898 esumcst 34027 esumcvgre 34055 voliune 34193 volfiniune 34194 sxbrsigalem0 34236 orvcgteel 34432 dstfrvclim1 34442 itg2addnclem2 37632 asindmre 37663 dvasin 37664 dvacos 37665 rfcnpre3 44933 supxrgere 45248 supxrgelem 45252 xrlexaddrp 45267 infxr 45282 xrpnf 45401 limsupre 45562 limsuppnflem 45631 liminflelimsupuz 45706 limsupub2 45733 icccncfext 45808 fourierdlem111 46138 fourierdlem113 46140 fouriersw 46152 sge0iunmptlemre 46336 sge0rpcpnf 46342 sge0xaddlem1 46354 meaiuninclem 46401 hoidmvlelem5 46520 ovolval5lem1 46573 pimltpnff 46624 iccpartiltu 47296 itscnhlinecirc02p 48519 |
Copyright terms: Public domain | W3C validator |