Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrlexaddrp Structured version   Visualization version   GIF version

Theorem xrlexaddrp 44763
Description: If an extended real number 𝐴 can be approximated from above, adding positive reals to 𝐵, then 𝐴 is less than or equal to 𝐵. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
xrlexaddrp.1 (𝜑𝐴 ∈ ℝ*)
xrlexaddrp.2 (𝜑𝐵 ∈ ℝ*)
xrlexaddrp.3 ((𝜑𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 𝑥))
Assertion
Ref Expression
xrlexaddrp (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem xrlexaddrp
StepHypRef Expression
1 xrlexaddrp.1 . . . . 5 (𝜑𝐴 ∈ ℝ*)
2 pnfge 13150 . . . . 5 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
31, 2syl 17 . . . 4 (𝜑𝐴 ≤ +∞)
43adantr 479 . . 3 ((𝜑𝐵 = +∞) → 𝐴 ≤ +∞)
5 id 22 . . . . 5 (𝐵 = +∞ → 𝐵 = +∞)
65eqcomd 2734 . . . 4 (𝐵 = +∞ → +∞ = 𝐵)
76adantl 480 . . 3 ((𝜑𝐵 = +∞) → +∞ = 𝐵)
84, 7breqtrd 5178 . 2 ((𝜑𝐵 = +∞) → 𝐴𝐵)
9 simpl 481 . . 3 ((𝜑 ∧ ¬ 𝐵 = +∞) → 𝜑)
10 neqne 2945 . . . 4 𝐵 = +∞ → 𝐵 ≠ +∞)
1110adantl 480 . . 3 ((𝜑 ∧ ¬ 𝐵 = +∞) → 𝐵 ≠ +∞)
12 simpr 483 . . . . . 6 ((𝜑𝐴 = -∞) → 𝐴 = -∞)
13 xrlexaddrp.2 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
14 mnfle 13154 . . . . . . . 8 (𝐵 ∈ ℝ* → -∞ ≤ 𝐵)
1513, 14syl 17 . . . . . . 7 (𝜑 → -∞ ≤ 𝐵)
1615adantr 479 . . . . . 6 ((𝜑𝐴 = -∞) → -∞ ≤ 𝐵)
1712, 16eqbrtrd 5174 . . . . 5 ((𝜑𝐴 = -∞) → 𝐴𝐵)
1817adantlr 713 . . . 4 (((𝜑𝐵 ≠ +∞) ∧ 𝐴 = -∞) → 𝐴𝐵)
19 simpl 481 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐴 = -∞) → (𝜑𝐵 ≠ +∞))
20 neqne 2945 . . . . . 6 𝐴 = -∞ → 𝐴 ≠ -∞)
2120adantl 480 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ -∞)
22 simpll 765 . . . . . 6 (((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) → 𝜑)
2313adantr 479 . . . . . . . . . . . 12 ((𝜑𝐵 ≠ +∞) → 𝐵 ∈ ℝ*)
24 simpr 483 . . . . . . . . . . . 12 ((𝜑𝐵 ≠ +∞) → 𝐵 ≠ +∞)
2523, 24jca 510 . . . . . . . . . . 11 ((𝜑𝐵 ≠ +∞) → (𝐵 ∈ ℝ*𝐵 ≠ +∞))
26 xrnepnf 13138 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = -∞))
2725, 26sylib 217 . . . . . . . . . 10 ((𝜑𝐵 ≠ +∞) → (𝐵 ∈ ℝ ∨ 𝐵 = -∞))
2827adantr 479 . . . . . . . . 9 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐵 ∈ ℝ) → (𝐵 ∈ ℝ ∨ 𝐵 = -∞))
29 simpr 483 . . . . . . . . 9 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐵 ∈ ℝ) → ¬ 𝐵 ∈ ℝ)
30 pm2.53 849 . . . . . . . . 9 ((𝐵 ∈ ℝ ∨ 𝐵 = -∞) → (¬ 𝐵 ∈ ℝ → 𝐵 = -∞))
3128, 29, 30sylc 65 . . . . . . . 8 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐵 ∈ ℝ) → 𝐵 = -∞)
3231adantlr 713 . . . . . . 7 ((((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐵 ∈ ℝ) → 𝐵 = -∞)
33 id 22 . . . . . . . . . . . . 13 (𝜑𝜑)
34 1rp 13018 . . . . . . . . . . . . . 14 1 ∈ ℝ+
3534a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ+)
36 1re 11252 . . . . . . . . . . . . . . 15 1 ∈ ℝ
3736elexi 3493 . . . . . . . . . . . . . 14 1 ∈ V
38 eleq1 2817 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (𝑥 ∈ ℝ+ ↔ 1 ∈ ℝ+))
3938anbi2d 628 . . . . . . . . . . . . . . 15 (𝑥 = 1 → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ 1 ∈ ℝ+)))
40 oveq2 7434 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (𝐵 +𝑒 𝑥) = (𝐵 +𝑒 1))
4140breq2d 5164 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (𝐴 ≤ (𝐵 +𝑒 𝑥) ↔ 𝐴 ≤ (𝐵 +𝑒 1)))
4239, 41imbi12d 343 . . . . . . . . . . . . . 14 (𝑥 = 1 → (((𝜑𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 𝑥)) ↔ ((𝜑 ∧ 1 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 1))))
43 xrlexaddrp.3 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 𝑥))
4437, 42, 43vtocl 3545 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 1))
4533, 35, 44syl2anc 582 . . . . . . . . . . . 12 (𝜑𝐴 ≤ (𝐵 +𝑒 1))
4645ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → 𝐴 ≤ (𝐵 +𝑒 1))
47 oveq1 7433 . . . . . . . . . . . . . . . 16 (𝐵 = -∞ → (𝐵 +𝑒 1) = (-∞ +𝑒 1))
48 1xr 11311 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ*
49 ltpnf 13140 . . . . . . . . . . . . . . . . . . . 20 (1 ∈ ℝ → 1 < +∞)
5036, 49ax-mp 5 . . . . . . . . . . . . . . . . . . 19 1 < +∞
5136, 50ltneii 11365 . . . . . . . . . . . . . . . . . 18 1 ≠ +∞
52 xaddmnf2 13248 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ* ∧ 1 ≠ +∞) → (-∞ +𝑒 1) = -∞)
5348, 51, 52mp2an 690 . . . . . . . . . . . . . . . . 17 (-∞ +𝑒 1) = -∞
5453a1i 11 . . . . . . . . . . . . . . . 16 (𝐵 = -∞ → (-∞ +𝑒 1) = -∞)
5547, 54eqtr2d 2769 . . . . . . . . . . . . . . 15 (𝐵 = -∞ → -∞ = (𝐵 +𝑒 1))
5655adantl 480 . . . . . . . . . . . . . 14 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → -∞ = (𝐵 +𝑒 1))
5756eqcomd 2734 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → (𝐵 +𝑒 1) = -∞)
581adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝐴 ≠ -∞) → 𝐴 ∈ ℝ*)
59 simpr 483 . . . . . . . . . . . . . . 15 ((𝜑𝐴 ≠ -∞) → 𝐴 ≠ -∞)
60 nemnftgtmnft 44755 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → -∞ < 𝐴)
6158, 59, 60syl2anc 582 . . . . . . . . . . . . . 14 ((𝜑𝐴 ≠ -∞) → -∞ < 𝐴)
6261adantr 479 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → -∞ < 𝐴)
6357, 62eqbrtrd 5174 . . . . . . . . . . . 12 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → (𝐵 +𝑒 1) < 𝐴)
6413ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → 𝐵 ∈ ℝ*)
6548a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → 1 ∈ ℝ*)
6664, 65xaddcld 13320 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → (𝐵 +𝑒 1) ∈ ℝ*)
671ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → 𝐴 ∈ ℝ*)
68 xrltnle 11319 . . . . . . . . . . . . 13 (((𝐵 +𝑒 1) ∈ ℝ*𝐴 ∈ ℝ*) → ((𝐵 +𝑒 1) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐵 +𝑒 1)))
6966, 67, 68syl2anc 582 . . . . . . . . . . . 12 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → ((𝐵 +𝑒 1) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐵 +𝑒 1)))
7063, 69mpbid 231 . . . . . . . . . . 11 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → ¬ 𝐴 ≤ (𝐵 +𝑒 1))
7146, 70pm2.65da 815 . . . . . . . . . 10 ((𝜑𝐴 ≠ -∞) → ¬ 𝐵 = -∞)
7271neqned 2944 . . . . . . . . 9 ((𝜑𝐴 ≠ -∞) → 𝐵 ≠ -∞)
7372ad4ant13 749 . . . . . . . 8 ((((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐵 ∈ ℝ) → 𝐵 ≠ -∞)
7473neneqd 2942 . . . . . . 7 ((((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐵 ∈ ℝ) → ¬ 𝐵 = -∞)
7532, 74condan 816 . . . . . 6 (((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) → 𝐵 ∈ ℝ)
7643adantlr 713 . . . . . . . . 9 (((𝜑𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 𝑥))
77 simpl 481 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
78 rpre 13022 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
7978adantl 480 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
80 rexadd 13251 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵 +𝑒 𝑥) = (𝐵 + 𝑥))
8177, 79, 80syl2anc 582 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → (𝐵 +𝑒 𝑥) = (𝐵 + 𝑥))
8281adantll 712 . . . . . . . . 9 (((𝜑𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐵 +𝑒 𝑥) = (𝐵 + 𝑥))
8376, 82breqtrd 5178 . . . . . . . 8 (((𝜑𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑥))
8483ralrimiva 3143 . . . . . . 7 ((𝜑𝐵 ∈ ℝ) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))
851adantr 479 . . . . . . . 8 ((𝜑𝐵 ∈ ℝ) → 𝐴 ∈ ℝ*)
86 simpr 483 . . . . . . . 8 ((𝜑𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
87 xralrple 13224 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
8885, 86, 87syl2anc 582 . . . . . . 7 ((𝜑𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
8984, 88mpbird 256 . . . . . 6 ((𝜑𝐵 ∈ ℝ) → 𝐴𝐵)
9022, 75, 89syl2anc 582 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) → 𝐴𝐵)
9119, 21, 90syl2anc 582 . . . 4 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴𝐵)
9218, 91pm2.61dan 811 . . 3 ((𝜑𝐵 ≠ +∞) → 𝐴𝐵)
939, 11, 92syl2anc 582 . 2 ((𝜑 ∧ ¬ 𝐵 = +∞) → 𝐴𝐵)
948, 93pm2.61dan 811 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2937  wral 3058   class class class wbr 5152  (class class class)co 7426  cr 11145  1c1 11147   + caddc 11149  +∞cpnf 11283  -∞cmnf 11284  *cxr 11285   < clt 11286  cle 11287  +crp 13014   +𝑒 cxad 13130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-sup 9473  df-inf 9474  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-n0 12511  df-z 12597  df-uz 12861  df-q 12971  df-rp 13015  df-xadd 13133
This theorem is referenced by:  infleinf  44783  sge0xaddlem2  45851  ovnsubadd  45989
  Copyright terms: Public domain W3C validator