Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrlexaddrp Structured version   Visualization version   GIF version

Theorem xrlexaddrp 41161
Description: If an extended real number 𝐴 can be approximated from above, adding positive reals to 𝐵, then 𝐴 is less than or equal to 𝐵. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
xrlexaddrp.1 (𝜑𝐴 ∈ ℝ*)
xrlexaddrp.2 (𝜑𝐵 ∈ ℝ*)
xrlexaddrp.3 ((𝜑𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 𝑥))
Assertion
Ref Expression
xrlexaddrp (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem xrlexaddrp
StepHypRef Expression
1 xrlexaddrp.1 . . . . 5 (𝜑𝐴 ∈ ℝ*)
2 pnfge 12375 . . . . 5 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
31, 2syl 17 . . . 4 (𝜑𝐴 ≤ +∞)
43adantr 481 . . 3 ((𝜑𝐵 = +∞) → 𝐴 ≤ +∞)
5 id 22 . . . . 5 (𝐵 = +∞ → 𝐵 = +∞)
65eqcomd 2801 . . . 4 (𝐵 = +∞ → +∞ = 𝐵)
76adantl 482 . . 3 ((𝜑𝐵 = +∞) → +∞ = 𝐵)
84, 7breqtrd 4988 . 2 ((𝜑𝐵 = +∞) → 𝐴𝐵)
9 simpl 483 . . 3 ((𝜑 ∧ ¬ 𝐵 = +∞) → 𝜑)
10 neqne 2992 . . . 4 𝐵 = +∞ → 𝐵 ≠ +∞)
1110adantl 482 . . 3 ((𝜑 ∧ ¬ 𝐵 = +∞) → 𝐵 ≠ +∞)
12 simpr 485 . . . . . 6 ((𝜑𝐴 = -∞) → 𝐴 = -∞)
13 xrlexaddrp.2 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
14 mnfle 12379 . . . . . . . 8 (𝐵 ∈ ℝ* → -∞ ≤ 𝐵)
1513, 14syl 17 . . . . . . 7 (𝜑 → -∞ ≤ 𝐵)
1615adantr 481 . . . . . 6 ((𝜑𝐴 = -∞) → -∞ ≤ 𝐵)
1712, 16eqbrtrd 4984 . . . . 5 ((𝜑𝐴 = -∞) → 𝐴𝐵)
1817adantlr 711 . . . 4 (((𝜑𝐵 ≠ +∞) ∧ 𝐴 = -∞) → 𝐴𝐵)
19 simpl 483 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐴 = -∞) → (𝜑𝐵 ≠ +∞))
20 neqne 2992 . . . . . 6 𝐴 = -∞ → 𝐴 ≠ -∞)
2120adantl 482 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ -∞)
22 simpll 763 . . . . . 6 (((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) → 𝜑)
2313adantr 481 . . . . . . . . . . . 12 ((𝜑𝐵 ≠ +∞) → 𝐵 ∈ ℝ*)
24 simpr 485 . . . . . . . . . . . 12 ((𝜑𝐵 ≠ +∞) → 𝐵 ≠ +∞)
2523, 24jca 512 . . . . . . . . . . 11 ((𝜑𝐵 ≠ +∞) → (𝐵 ∈ ℝ*𝐵 ≠ +∞))
26 xrnepnf 12363 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = -∞))
2725, 26sylib 219 . . . . . . . . . 10 ((𝜑𝐵 ≠ +∞) → (𝐵 ∈ ℝ ∨ 𝐵 = -∞))
2827adantr 481 . . . . . . . . 9 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐵 ∈ ℝ) → (𝐵 ∈ ℝ ∨ 𝐵 = -∞))
29 simpr 485 . . . . . . . . 9 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐵 ∈ ℝ) → ¬ 𝐵 ∈ ℝ)
30 pm2.53 846 . . . . . . . . 9 ((𝐵 ∈ ℝ ∨ 𝐵 = -∞) → (¬ 𝐵 ∈ ℝ → 𝐵 = -∞))
3128, 29, 30sylc 65 . . . . . . . 8 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐵 ∈ ℝ) → 𝐵 = -∞)
3231adantlr 711 . . . . . . 7 ((((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐵 ∈ ℝ) → 𝐵 = -∞)
33 id 22 . . . . . . . . . . . . 13 (𝜑𝜑)
34 1rp 12243 . . . . . . . . . . . . . 14 1 ∈ ℝ+
3534a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ+)
36 1re 10487 . . . . . . . . . . . . . . 15 1 ∈ ℝ
3736elexi 3456 . . . . . . . . . . . . . 14 1 ∈ V
38 eleq1 2870 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (𝑥 ∈ ℝ+ ↔ 1 ∈ ℝ+))
3938anbi2d 628 . . . . . . . . . . . . . . 15 (𝑥 = 1 → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ 1 ∈ ℝ+)))
40 oveq2 7024 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (𝐵 +𝑒 𝑥) = (𝐵 +𝑒 1))
4140breq2d 4974 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (𝐴 ≤ (𝐵 +𝑒 𝑥) ↔ 𝐴 ≤ (𝐵 +𝑒 1)))
4239, 41imbi12d 346 . . . . . . . . . . . . . 14 (𝑥 = 1 → (((𝜑𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 𝑥)) ↔ ((𝜑 ∧ 1 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 1))))
43 xrlexaddrp.3 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 𝑥))
4437, 42, 43vtocl 3502 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 1))
4533, 35, 44syl2anc 584 . . . . . . . . . . . 12 (𝜑𝐴 ≤ (𝐵 +𝑒 1))
4645ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → 𝐴 ≤ (𝐵 +𝑒 1))
47 oveq1 7023 . . . . . . . . . . . . . . . 16 (𝐵 = -∞ → (𝐵 +𝑒 1) = (-∞ +𝑒 1))
48 1xr 10547 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ*
49 ltpnf 12365 . . . . . . . . . . . . . . . . . . . 20 (1 ∈ ℝ → 1 < +∞)
5036, 49ax-mp 5 . . . . . . . . . . . . . . . . . . 19 1 < +∞
5136, 50ltneii 10600 . . . . . . . . . . . . . . . . . 18 1 ≠ +∞
52 xaddmnf2 12472 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ* ∧ 1 ≠ +∞) → (-∞ +𝑒 1) = -∞)
5348, 51, 52mp2an 688 . . . . . . . . . . . . . . . . 17 (-∞ +𝑒 1) = -∞
5453a1i 11 . . . . . . . . . . . . . . . 16 (𝐵 = -∞ → (-∞ +𝑒 1) = -∞)
5547, 54eqtr2d 2832 . . . . . . . . . . . . . . 15 (𝐵 = -∞ → -∞ = (𝐵 +𝑒 1))
5655adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → -∞ = (𝐵 +𝑒 1))
5756eqcomd 2801 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → (𝐵 +𝑒 1) = -∞)
581adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝐴 ≠ -∞) → 𝐴 ∈ ℝ*)
59 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑𝐴 ≠ -∞) → 𝐴 ≠ -∞)
60 nemnftgtmnft 41153 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → -∞ < 𝐴)
6158, 59, 60syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝐴 ≠ -∞) → -∞ < 𝐴)
6261adantr 481 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → -∞ < 𝐴)
6357, 62eqbrtrd 4984 . . . . . . . . . . . 12 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → (𝐵 +𝑒 1) < 𝐴)
6413ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → 𝐵 ∈ ℝ*)
6548a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → 1 ∈ ℝ*)
6664, 65xaddcld 12544 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → (𝐵 +𝑒 1) ∈ ℝ*)
671ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → 𝐴 ∈ ℝ*)
68 xrltnle 10555 . . . . . . . . . . . . 13 (((𝐵 +𝑒 1) ∈ ℝ*𝐴 ∈ ℝ*) → ((𝐵 +𝑒 1) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐵 +𝑒 1)))
6966, 67, 68syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → ((𝐵 +𝑒 1) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐵 +𝑒 1)))
7063, 69mpbid 233 . . . . . . . . . . 11 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → ¬ 𝐴 ≤ (𝐵 +𝑒 1))
7146, 70pm2.65da 813 . . . . . . . . . 10 ((𝜑𝐴 ≠ -∞) → ¬ 𝐵 = -∞)
7271neqned 2991 . . . . . . . . 9 ((𝜑𝐴 ≠ -∞) → 𝐵 ≠ -∞)
7372ad4ant13 747 . . . . . . . 8 ((((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐵 ∈ ℝ) → 𝐵 ≠ -∞)
7473neneqd 2989 . . . . . . 7 ((((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐵 ∈ ℝ) → ¬ 𝐵 = -∞)
7532, 74condan 814 . . . . . 6 (((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) → 𝐵 ∈ ℝ)
7643adantlr 711 . . . . . . . . 9 (((𝜑𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 𝑥))
77 simpl 483 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
78 rpre 12247 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
7978adantl 482 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
80 rexadd 12475 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵 +𝑒 𝑥) = (𝐵 + 𝑥))
8177, 79, 80syl2anc 584 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → (𝐵 +𝑒 𝑥) = (𝐵 + 𝑥))
8281adantll 710 . . . . . . . . 9 (((𝜑𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐵 +𝑒 𝑥) = (𝐵 + 𝑥))
8376, 82breqtrd 4988 . . . . . . . 8 (((𝜑𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑥))
8483ralrimiva 3149 . . . . . . 7 ((𝜑𝐵 ∈ ℝ) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))
851adantr 481 . . . . . . . 8 ((𝜑𝐵 ∈ ℝ) → 𝐴 ∈ ℝ*)
86 simpr 485 . . . . . . . 8 ((𝜑𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
87 xralrple 12448 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
8885, 86, 87syl2anc 584 . . . . . . 7 ((𝜑𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
8984, 88mpbird 258 . . . . . 6 ((𝜑𝐵 ∈ ℝ) → 𝐴𝐵)
9022, 75, 89syl2anc 584 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) → 𝐴𝐵)
9119, 21, 90syl2anc 584 . . . 4 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴𝐵)
9218, 91pm2.61dan 809 . . 3 ((𝜑𝐵 ≠ +∞) → 𝐴𝐵)
939, 11, 92syl2anc 584 . 2 ((𝜑 ∧ ¬ 𝐵 = +∞) → 𝐴𝐵)
948, 93pm2.61dan 809 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842   = wceq 1522  wcel 2081  wne 2984  wral 3105   class class class wbr 4962  (class class class)co 7016  cr 10382  1c1 10384   + caddc 10386  +∞cpnf 10518  -∞cmnf 10519  *cxr 10520   < clt 10521  cle 10522  +crp 12239   +𝑒 cxad 12355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-sup 8752  df-inf 8753  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-n0 11746  df-z 11830  df-uz 12094  df-q 12198  df-rp 12240  df-xadd 12358
This theorem is referenced by:  infleinf  41181  sge0xaddlem2  42258  ovnsubadd  42396
  Copyright terms: Public domain W3C validator