Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrlexaddrp Structured version   Visualization version   GIF version

Theorem xrlexaddrp 42891
Description: If an extended real number 𝐴 can be approximated from above, adding positive reals to 𝐵, then 𝐴 is less than or equal to 𝐵. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
xrlexaddrp.1 (𝜑𝐴 ∈ ℝ*)
xrlexaddrp.2 (𝜑𝐵 ∈ ℝ*)
xrlexaddrp.3 ((𝜑𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 𝑥))
Assertion
Ref Expression
xrlexaddrp (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem xrlexaddrp
StepHypRef Expression
1 xrlexaddrp.1 . . . . 5 (𝜑𝐴 ∈ ℝ*)
2 pnfge 12866 . . . . 5 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
31, 2syl 17 . . . 4 (𝜑𝐴 ≤ +∞)
43adantr 481 . . 3 ((𝜑𝐵 = +∞) → 𝐴 ≤ +∞)
5 id 22 . . . . 5 (𝐵 = +∞ → 𝐵 = +∞)
65eqcomd 2744 . . . 4 (𝐵 = +∞ → +∞ = 𝐵)
76adantl 482 . . 3 ((𝜑𝐵 = +∞) → +∞ = 𝐵)
84, 7breqtrd 5100 . 2 ((𝜑𝐵 = +∞) → 𝐴𝐵)
9 simpl 483 . . 3 ((𝜑 ∧ ¬ 𝐵 = +∞) → 𝜑)
10 neqne 2951 . . . 4 𝐵 = +∞ → 𝐵 ≠ +∞)
1110adantl 482 . . 3 ((𝜑 ∧ ¬ 𝐵 = +∞) → 𝐵 ≠ +∞)
12 simpr 485 . . . . . 6 ((𝜑𝐴 = -∞) → 𝐴 = -∞)
13 xrlexaddrp.2 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
14 mnfle 12870 . . . . . . . 8 (𝐵 ∈ ℝ* → -∞ ≤ 𝐵)
1513, 14syl 17 . . . . . . 7 (𝜑 → -∞ ≤ 𝐵)
1615adantr 481 . . . . . 6 ((𝜑𝐴 = -∞) → -∞ ≤ 𝐵)
1712, 16eqbrtrd 5096 . . . . 5 ((𝜑𝐴 = -∞) → 𝐴𝐵)
1817adantlr 712 . . . 4 (((𝜑𝐵 ≠ +∞) ∧ 𝐴 = -∞) → 𝐴𝐵)
19 simpl 483 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐴 = -∞) → (𝜑𝐵 ≠ +∞))
20 neqne 2951 . . . . . 6 𝐴 = -∞ → 𝐴 ≠ -∞)
2120adantl 482 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ -∞)
22 simpll 764 . . . . . 6 (((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) → 𝜑)
2313adantr 481 . . . . . . . . . . . 12 ((𝜑𝐵 ≠ +∞) → 𝐵 ∈ ℝ*)
24 simpr 485 . . . . . . . . . . . 12 ((𝜑𝐵 ≠ +∞) → 𝐵 ≠ +∞)
2523, 24jca 512 . . . . . . . . . . 11 ((𝜑𝐵 ≠ +∞) → (𝐵 ∈ ℝ*𝐵 ≠ +∞))
26 xrnepnf 12854 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = -∞))
2725, 26sylib 217 . . . . . . . . . 10 ((𝜑𝐵 ≠ +∞) → (𝐵 ∈ ℝ ∨ 𝐵 = -∞))
2827adantr 481 . . . . . . . . 9 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐵 ∈ ℝ) → (𝐵 ∈ ℝ ∨ 𝐵 = -∞))
29 simpr 485 . . . . . . . . 9 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐵 ∈ ℝ) → ¬ 𝐵 ∈ ℝ)
30 pm2.53 848 . . . . . . . . 9 ((𝐵 ∈ ℝ ∨ 𝐵 = -∞) → (¬ 𝐵 ∈ ℝ → 𝐵 = -∞))
3128, 29, 30sylc 65 . . . . . . . 8 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐵 ∈ ℝ) → 𝐵 = -∞)
3231adantlr 712 . . . . . . 7 ((((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐵 ∈ ℝ) → 𝐵 = -∞)
33 id 22 . . . . . . . . . . . . 13 (𝜑𝜑)
34 1rp 12734 . . . . . . . . . . . . . 14 1 ∈ ℝ+
3534a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ+)
36 1re 10975 . . . . . . . . . . . . . . 15 1 ∈ ℝ
3736elexi 3451 . . . . . . . . . . . . . 14 1 ∈ V
38 eleq1 2826 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (𝑥 ∈ ℝ+ ↔ 1 ∈ ℝ+))
3938anbi2d 629 . . . . . . . . . . . . . . 15 (𝑥 = 1 → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ 1 ∈ ℝ+)))
40 oveq2 7283 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (𝐵 +𝑒 𝑥) = (𝐵 +𝑒 1))
4140breq2d 5086 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (𝐴 ≤ (𝐵 +𝑒 𝑥) ↔ 𝐴 ≤ (𝐵 +𝑒 1)))
4239, 41imbi12d 345 . . . . . . . . . . . . . 14 (𝑥 = 1 → (((𝜑𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 𝑥)) ↔ ((𝜑 ∧ 1 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 1))))
43 xrlexaddrp.3 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 𝑥))
4437, 42, 43vtocl 3498 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 1))
4533, 35, 44syl2anc 584 . . . . . . . . . . . 12 (𝜑𝐴 ≤ (𝐵 +𝑒 1))
4645ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → 𝐴 ≤ (𝐵 +𝑒 1))
47 oveq1 7282 . . . . . . . . . . . . . . . 16 (𝐵 = -∞ → (𝐵 +𝑒 1) = (-∞ +𝑒 1))
48 1xr 11034 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ*
49 ltpnf 12856 . . . . . . . . . . . . . . . . . . . 20 (1 ∈ ℝ → 1 < +∞)
5036, 49ax-mp 5 . . . . . . . . . . . . . . . . . . 19 1 < +∞
5136, 50ltneii 11088 . . . . . . . . . . . . . . . . . 18 1 ≠ +∞
52 xaddmnf2 12963 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ* ∧ 1 ≠ +∞) → (-∞ +𝑒 1) = -∞)
5348, 51, 52mp2an 689 . . . . . . . . . . . . . . . . 17 (-∞ +𝑒 1) = -∞
5453a1i 11 . . . . . . . . . . . . . . . 16 (𝐵 = -∞ → (-∞ +𝑒 1) = -∞)
5547, 54eqtr2d 2779 . . . . . . . . . . . . . . 15 (𝐵 = -∞ → -∞ = (𝐵 +𝑒 1))
5655adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → -∞ = (𝐵 +𝑒 1))
5756eqcomd 2744 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → (𝐵 +𝑒 1) = -∞)
581adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝐴 ≠ -∞) → 𝐴 ∈ ℝ*)
59 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑𝐴 ≠ -∞) → 𝐴 ≠ -∞)
60 nemnftgtmnft 42883 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → -∞ < 𝐴)
6158, 59, 60syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝐴 ≠ -∞) → -∞ < 𝐴)
6261adantr 481 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → -∞ < 𝐴)
6357, 62eqbrtrd 5096 . . . . . . . . . . . 12 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → (𝐵 +𝑒 1) < 𝐴)
6413ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → 𝐵 ∈ ℝ*)
6548a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → 1 ∈ ℝ*)
6664, 65xaddcld 13035 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → (𝐵 +𝑒 1) ∈ ℝ*)
671ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → 𝐴 ∈ ℝ*)
68 xrltnle 11042 . . . . . . . . . . . . 13 (((𝐵 +𝑒 1) ∈ ℝ*𝐴 ∈ ℝ*) → ((𝐵 +𝑒 1) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐵 +𝑒 1)))
6966, 67, 68syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → ((𝐵 +𝑒 1) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐵 +𝑒 1)))
7063, 69mpbid 231 . . . . . . . . . . 11 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → ¬ 𝐴 ≤ (𝐵 +𝑒 1))
7146, 70pm2.65da 814 . . . . . . . . . 10 ((𝜑𝐴 ≠ -∞) → ¬ 𝐵 = -∞)
7271neqned 2950 . . . . . . . . 9 ((𝜑𝐴 ≠ -∞) → 𝐵 ≠ -∞)
7372ad4ant13 748 . . . . . . . 8 ((((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐵 ∈ ℝ) → 𝐵 ≠ -∞)
7473neneqd 2948 . . . . . . 7 ((((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐵 ∈ ℝ) → ¬ 𝐵 = -∞)
7532, 74condan 815 . . . . . 6 (((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) → 𝐵 ∈ ℝ)
7643adantlr 712 . . . . . . . . 9 (((𝜑𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 𝑥))
77 simpl 483 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
78 rpre 12738 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
7978adantl 482 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
80 rexadd 12966 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵 +𝑒 𝑥) = (𝐵 + 𝑥))
8177, 79, 80syl2anc 584 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → (𝐵 +𝑒 𝑥) = (𝐵 + 𝑥))
8281adantll 711 . . . . . . . . 9 (((𝜑𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐵 +𝑒 𝑥) = (𝐵 + 𝑥))
8376, 82breqtrd 5100 . . . . . . . 8 (((𝜑𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑥))
8483ralrimiva 3103 . . . . . . 7 ((𝜑𝐵 ∈ ℝ) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))
851adantr 481 . . . . . . . 8 ((𝜑𝐵 ∈ ℝ) → 𝐴 ∈ ℝ*)
86 simpr 485 . . . . . . . 8 ((𝜑𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
87 xralrple 12939 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
8885, 86, 87syl2anc 584 . . . . . . 7 ((𝜑𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
8984, 88mpbird 256 . . . . . 6 ((𝜑𝐵 ∈ ℝ) → 𝐴𝐵)
9022, 75, 89syl2anc 584 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) → 𝐴𝐵)
9119, 21, 90syl2anc 584 . . . 4 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴𝐵)
9218, 91pm2.61dan 810 . . 3 ((𝜑𝐵 ≠ +∞) → 𝐴𝐵)
939, 11, 92syl2anc 584 . 2 ((𝜑 ∧ ¬ 𝐵 = +∞) → 𝐴𝐵)
948, 93pm2.61dan 810 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  wral 3064   class class class wbr 5074  (class class class)co 7275  cr 10870  1c1 10872   + caddc 10874  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008   < clt 11009  cle 11010  +crp 12730   +𝑒 cxad 12846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xadd 12849
This theorem is referenced by:  infleinf  42911  sge0xaddlem2  43972  ovnsubadd  44110
  Copyright terms: Public domain W3C validator