Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrlexaddrp Structured version   Visualization version   GIF version

Theorem xrlexaddrp 42781
Description: If an extended real number 𝐴 can be approximated from above, adding positive reals to 𝐵, then 𝐴 is less than or equal to 𝐵. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
xrlexaddrp.1 (𝜑𝐴 ∈ ℝ*)
xrlexaddrp.2 (𝜑𝐵 ∈ ℝ*)
xrlexaddrp.3 ((𝜑𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 𝑥))
Assertion
Ref Expression
xrlexaddrp (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem xrlexaddrp
StepHypRef Expression
1 xrlexaddrp.1 . . . . 5 (𝜑𝐴 ∈ ℝ*)
2 pnfge 12795 . . . . 5 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
31, 2syl 17 . . . 4 (𝜑𝐴 ≤ +∞)
43adantr 480 . . 3 ((𝜑𝐵 = +∞) → 𝐴 ≤ +∞)
5 id 22 . . . . 5 (𝐵 = +∞ → 𝐵 = +∞)
65eqcomd 2744 . . . 4 (𝐵 = +∞ → +∞ = 𝐵)
76adantl 481 . . 3 ((𝜑𝐵 = +∞) → +∞ = 𝐵)
84, 7breqtrd 5096 . 2 ((𝜑𝐵 = +∞) → 𝐴𝐵)
9 simpl 482 . . 3 ((𝜑 ∧ ¬ 𝐵 = +∞) → 𝜑)
10 neqne 2950 . . . 4 𝐵 = +∞ → 𝐵 ≠ +∞)
1110adantl 481 . . 3 ((𝜑 ∧ ¬ 𝐵 = +∞) → 𝐵 ≠ +∞)
12 simpr 484 . . . . . 6 ((𝜑𝐴 = -∞) → 𝐴 = -∞)
13 xrlexaddrp.2 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
14 mnfle 12799 . . . . . . . 8 (𝐵 ∈ ℝ* → -∞ ≤ 𝐵)
1513, 14syl 17 . . . . . . 7 (𝜑 → -∞ ≤ 𝐵)
1615adantr 480 . . . . . 6 ((𝜑𝐴 = -∞) → -∞ ≤ 𝐵)
1712, 16eqbrtrd 5092 . . . . 5 ((𝜑𝐴 = -∞) → 𝐴𝐵)
1817adantlr 711 . . . 4 (((𝜑𝐵 ≠ +∞) ∧ 𝐴 = -∞) → 𝐴𝐵)
19 simpl 482 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐴 = -∞) → (𝜑𝐵 ≠ +∞))
20 neqne 2950 . . . . . 6 𝐴 = -∞ → 𝐴 ≠ -∞)
2120adantl 481 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ -∞)
22 simpll 763 . . . . . 6 (((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) → 𝜑)
2313adantr 480 . . . . . . . . . . . 12 ((𝜑𝐵 ≠ +∞) → 𝐵 ∈ ℝ*)
24 simpr 484 . . . . . . . . . . . 12 ((𝜑𝐵 ≠ +∞) → 𝐵 ≠ +∞)
2523, 24jca 511 . . . . . . . . . . 11 ((𝜑𝐵 ≠ +∞) → (𝐵 ∈ ℝ*𝐵 ≠ +∞))
26 xrnepnf 12783 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = -∞))
2725, 26sylib 217 . . . . . . . . . 10 ((𝜑𝐵 ≠ +∞) → (𝐵 ∈ ℝ ∨ 𝐵 = -∞))
2827adantr 480 . . . . . . . . 9 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐵 ∈ ℝ) → (𝐵 ∈ ℝ ∨ 𝐵 = -∞))
29 simpr 484 . . . . . . . . 9 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐵 ∈ ℝ) → ¬ 𝐵 ∈ ℝ)
30 pm2.53 847 . . . . . . . . 9 ((𝐵 ∈ ℝ ∨ 𝐵 = -∞) → (¬ 𝐵 ∈ ℝ → 𝐵 = -∞))
3128, 29, 30sylc 65 . . . . . . . 8 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐵 ∈ ℝ) → 𝐵 = -∞)
3231adantlr 711 . . . . . . 7 ((((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐵 ∈ ℝ) → 𝐵 = -∞)
33 id 22 . . . . . . . . . . . . 13 (𝜑𝜑)
34 1rp 12663 . . . . . . . . . . . . . 14 1 ∈ ℝ+
3534a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ+)
36 1re 10906 . . . . . . . . . . . . . . 15 1 ∈ ℝ
3736elexi 3441 . . . . . . . . . . . . . 14 1 ∈ V
38 eleq1 2826 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (𝑥 ∈ ℝ+ ↔ 1 ∈ ℝ+))
3938anbi2d 628 . . . . . . . . . . . . . . 15 (𝑥 = 1 → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ 1 ∈ ℝ+)))
40 oveq2 7263 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (𝐵 +𝑒 𝑥) = (𝐵 +𝑒 1))
4140breq2d 5082 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (𝐴 ≤ (𝐵 +𝑒 𝑥) ↔ 𝐴 ≤ (𝐵 +𝑒 1)))
4239, 41imbi12d 344 . . . . . . . . . . . . . 14 (𝑥 = 1 → (((𝜑𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 𝑥)) ↔ ((𝜑 ∧ 1 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 1))))
43 xrlexaddrp.3 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 𝑥))
4437, 42, 43vtocl 3488 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 1))
4533, 35, 44syl2anc 583 . . . . . . . . . . . 12 (𝜑𝐴 ≤ (𝐵 +𝑒 1))
4645ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → 𝐴 ≤ (𝐵 +𝑒 1))
47 oveq1 7262 . . . . . . . . . . . . . . . 16 (𝐵 = -∞ → (𝐵 +𝑒 1) = (-∞ +𝑒 1))
48 1xr 10965 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ*
49 ltpnf 12785 . . . . . . . . . . . . . . . . . . . 20 (1 ∈ ℝ → 1 < +∞)
5036, 49ax-mp 5 . . . . . . . . . . . . . . . . . . 19 1 < +∞
5136, 50ltneii 11018 . . . . . . . . . . . . . . . . . 18 1 ≠ +∞
52 xaddmnf2 12892 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ* ∧ 1 ≠ +∞) → (-∞ +𝑒 1) = -∞)
5348, 51, 52mp2an 688 . . . . . . . . . . . . . . . . 17 (-∞ +𝑒 1) = -∞
5453a1i 11 . . . . . . . . . . . . . . . 16 (𝐵 = -∞ → (-∞ +𝑒 1) = -∞)
5547, 54eqtr2d 2779 . . . . . . . . . . . . . . 15 (𝐵 = -∞ → -∞ = (𝐵 +𝑒 1))
5655adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → -∞ = (𝐵 +𝑒 1))
5756eqcomd 2744 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → (𝐵 +𝑒 1) = -∞)
581adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝐴 ≠ -∞) → 𝐴 ∈ ℝ*)
59 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝐴 ≠ -∞) → 𝐴 ≠ -∞)
60 nemnftgtmnft 42773 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → -∞ < 𝐴)
6158, 59, 60syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝐴 ≠ -∞) → -∞ < 𝐴)
6261adantr 480 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → -∞ < 𝐴)
6357, 62eqbrtrd 5092 . . . . . . . . . . . 12 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → (𝐵 +𝑒 1) < 𝐴)
6413ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → 𝐵 ∈ ℝ*)
6548a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → 1 ∈ ℝ*)
6664, 65xaddcld 12964 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → (𝐵 +𝑒 1) ∈ ℝ*)
671ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → 𝐴 ∈ ℝ*)
68 xrltnle 10973 . . . . . . . . . . . . 13 (((𝐵 +𝑒 1) ∈ ℝ*𝐴 ∈ ℝ*) → ((𝐵 +𝑒 1) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐵 +𝑒 1)))
6966, 67, 68syl2anc 583 . . . . . . . . . . . 12 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → ((𝐵 +𝑒 1) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐵 +𝑒 1)))
7063, 69mpbid 231 . . . . . . . . . . 11 (((𝜑𝐴 ≠ -∞) ∧ 𝐵 = -∞) → ¬ 𝐴 ≤ (𝐵 +𝑒 1))
7146, 70pm2.65da 813 . . . . . . . . . 10 ((𝜑𝐴 ≠ -∞) → ¬ 𝐵 = -∞)
7271neqned 2949 . . . . . . . . 9 ((𝜑𝐴 ≠ -∞) → 𝐵 ≠ -∞)
7372ad4ant13 747 . . . . . . . 8 ((((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐵 ∈ ℝ) → 𝐵 ≠ -∞)
7473neneqd 2947 . . . . . . 7 ((((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐵 ∈ ℝ) → ¬ 𝐵 = -∞)
7532, 74condan 814 . . . . . 6 (((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) → 𝐵 ∈ ℝ)
7643adantlr 711 . . . . . . . . 9 (((𝜑𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 𝑥))
77 simpl 482 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
78 rpre 12667 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
7978adantl 481 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
80 rexadd 12895 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵 +𝑒 𝑥) = (𝐵 + 𝑥))
8177, 79, 80syl2anc 583 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → (𝐵 +𝑒 𝑥) = (𝐵 + 𝑥))
8281adantll 710 . . . . . . . . 9 (((𝜑𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐵 +𝑒 𝑥) = (𝐵 + 𝑥))
8376, 82breqtrd 5096 . . . . . . . 8 (((𝜑𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑥))
8483ralrimiva 3107 . . . . . . 7 ((𝜑𝐵 ∈ ℝ) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))
851adantr 480 . . . . . . . 8 ((𝜑𝐵 ∈ ℝ) → 𝐴 ∈ ℝ*)
86 simpr 484 . . . . . . . 8 ((𝜑𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
87 xralrple 12868 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
8885, 86, 87syl2anc 583 . . . . . . 7 ((𝜑𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
8984, 88mpbird 256 . . . . . 6 ((𝜑𝐵 ∈ ℝ) → 𝐴𝐵)
9022, 75, 89syl2anc 583 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ 𝐴 ≠ -∞) → 𝐴𝐵)
9119, 21, 90syl2anc 583 . . . 4 (((𝜑𝐵 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴𝐵)
9218, 91pm2.61dan 809 . . 3 ((𝜑𝐵 ≠ +∞) → 𝐴𝐵)
939, 11, 92syl2anc 583 . 2 ((𝜑 ∧ ¬ 𝐵 = +∞) → 𝐴𝐵)
948, 93pm2.61dan 809 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wral 3063   class class class wbr 5070  (class class class)co 7255  cr 10801  1c1 10803   + caddc 10805  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941  +crp 12659   +𝑒 cxad 12775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xadd 12778
This theorem is referenced by:  infleinf  42801  sge0xaddlem2  43862  ovnsubadd  44000
  Copyright terms: Public domain W3C validator