![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relbrtpos | Structured version Visualization version GIF version |
Description: The transposition swaps arguments of a three-parameter relation. (Contributed by Mario Carneiro, 3-Nov-2015.) |
Ref | Expression |
---|---|
relbrtpos | ⊢ (Rel 𝐹 → (〈𝐴, 𝐵〉tpos 𝐹𝐶 ↔ 〈𝐵, 𝐴〉𝐹𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reltpos 7694 | . . . 4 ⊢ Rel tpos 𝐹 | |
2 | 1 | a1i 11 | . . 3 ⊢ (Rel 𝐹 → Rel tpos 𝐹) |
3 | brrelex2 5450 | . . 3 ⊢ ((Rel tpos 𝐹 ∧ 〈𝐴, 𝐵〉tpos 𝐹𝐶) → 𝐶 ∈ V) | |
4 | 2, 3 | sylan 572 | . 2 ⊢ ((Rel 𝐹 ∧ 〈𝐴, 𝐵〉tpos 𝐹𝐶) → 𝐶 ∈ V) |
5 | brrelex2 5450 | . 2 ⊢ ((Rel 𝐹 ∧ 〈𝐵, 𝐴〉𝐹𝐶) → 𝐶 ∈ V) | |
6 | brtpos 7698 | . 2 ⊢ (𝐶 ∈ V → (〈𝐴, 𝐵〉tpos 𝐹𝐶 ↔ 〈𝐵, 𝐴〉𝐹𝐶)) | |
7 | 4, 5, 6 | pm5.21nd 789 | 1 ⊢ (Rel 𝐹 → (〈𝐴, 𝐵〉tpos 𝐹𝐶 ↔ 〈𝐵, 𝐴〉𝐹𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∈ wcel 2050 Vcvv 3409 〈cop 4441 class class class wbr 4923 Rel wrel 5406 tpos ctpos 7688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3676 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5306 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-iota 6146 df-fun 6184 df-fn 6185 df-fv 6190 df-tpos 7689 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |