![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relbrtpos | Structured version Visualization version GIF version |
Description: The transposition swaps arguments of a three-parameter relation. (Contributed by Mario Carneiro, 3-Nov-2015.) |
Ref | Expression |
---|---|
relbrtpos | ⊢ (Rel 𝐹 → (〈𝐴, 𝐵〉tpos 𝐹𝐶 ↔ 〈𝐵, 𝐴〉𝐹𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reltpos 8264 | . . . 4 ⊢ Rel tpos 𝐹 | |
2 | 1 | a1i 11 | . . 3 ⊢ (Rel 𝐹 → Rel tpos 𝐹) |
3 | brrelex2 5747 | . . 3 ⊢ ((Rel tpos 𝐹 ∧ 〈𝐴, 𝐵〉tpos 𝐹𝐶) → 𝐶 ∈ V) | |
4 | 2, 3 | sylan 580 | . 2 ⊢ ((Rel 𝐹 ∧ 〈𝐴, 𝐵〉tpos 𝐹𝐶) → 𝐶 ∈ V) |
5 | brrelex2 5747 | . 2 ⊢ ((Rel 𝐹 ∧ 〈𝐵, 𝐴〉𝐹𝐶) → 𝐶 ∈ V) | |
6 | brtpos 8268 | . 2 ⊢ (𝐶 ∈ V → (〈𝐴, 𝐵〉tpos 𝐹𝐶 ↔ 〈𝐵, 𝐴〉𝐹𝐶)) | |
7 | 4, 5, 6 | pm5.21nd 802 | 1 ⊢ (Rel 𝐹 → (〈𝐴, 𝐵〉tpos 𝐹𝐶 ↔ 〈𝐵, 𝐴〉𝐹𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 Vcvv 3481 〈cop 4640 class class class wbr 5151 Rel wrel 5698 tpos ctpos 8258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-fv 6577 df-tpos 8259 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |