MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relbrtpos Structured version   Visualization version   GIF version

Theorem relbrtpos 8170
Description: The transposition swaps arguments of a three-parameter relation. (Contributed by Mario Carneiro, 3-Nov-2015.)
Assertion
Ref Expression
relbrtpos (Rel 𝐹 → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))

Proof of Theorem relbrtpos
StepHypRef Expression
1 reltpos 8164 . . . 4 Rel tpos 𝐹
21a1i 11 . . 3 (Rel 𝐹 → Rel tpos 𝐹)
3 brrelex2 5673 . . 3 ((Rel tpos 𝐹 ∧ ⟨𝐴, 𝐵⟩tpos 𝐹𝐶) → 𝐶 ∈ V)
42, 3sylan 580 . 2 ((Rel 𝐹 ∧ ⟨𝐴, 𝐵⟩tpos 𝐹𝐶) → 𝐶 ∈ V)
5 brrelex2 5673 . 2 ((Rel 𝐹 ∧ ⟨𝐵, 𝐴𝐹𝐶) → 𝐶 ∈ V)
6 brtpos 8168 . 2 (𝐶 ∈ V → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))
74, 5, 6pm5.21nd 801 1 (Rel 𝐹 → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  Vcvv 3436  cop 4583   class class class wbr 5092  Rel wrel 5624  tpos ctpos 8158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490  df-tpos 8159
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator