![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eltg | Structured version Visualization version GIF version |
Description: Membership in a topology generated by a basis. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
eltg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgval 22440 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) | |
2 | 1 | eleq2d 2820 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)})) |
3 | elex 3493 | . . . 4 ⊢ (𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} → 𝐴 ∈ V) | |
4 | 3 | adantl 483 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) → 𝐴 ∈ V) |
5 | inex1g 5318 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∩ 𝒫 𝐴) ∈ V) | |
6 | 5 | uniexd 7727 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → ∪ (𝐵 ∩ 𝒫 𝐴) ∈ V) |
7 | ssexg 5322 | . . . . 5 ⊢ ((𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴) ∧ ∪ (𝐵 ∩ 𝒫 𝐴) ∈ V) → 𝐴 ∈ V) | |
8 | 6, 7 | sylan2 594 | . . . 4 ⊢ ((𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴) ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) |
9 | 8 | ancoms 460 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴)) → 𝐴 ∈ V) |
10 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
11 | pweq 4615 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
12 | 11 | ineq2d 4211 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝐴)) |
13 | 12 | unieqd 4921 | . . . . 5 ⊢ (𝑥 = 𝐴 → ∪ (𝐵 ∩ 𝒫 𝑥) = ∪ (𝐵 ∩ 𝒫 𝐴)) |
14 | 10, 13 | sseq12d 4014 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
15 | 14 | elabg 3665 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
16 | 4, 9, 15 | pm5.21nd 801 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
17 | 2, 16 | bitrd 279 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 {cab 2710 Vcvv 3475 ∩ cin 3946 ⊆ wss 3947 𝒫 cpw 4601 ∪ cuni 4907 ‘cfv 6540 topGenctg 17379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-topgen 17385 |
This theorem is referenced by: eltg4i 22445 eltg3i 22446 bastg 22451 tgss 22453 eltop 22459 tgqtop 23198 isfne4 35163 |
Copyright terms: Public domain | W3C validator |