![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eltg | Structured version Visualization version GIF version |
Description: Membership in a topology generated by a basis. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
eltg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgval 21251 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) | |
2 | 1 | eleq2d 2870 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)})) |
3 | elex 3458 | . . . 4 ⊢ (𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} → 𝐴 ∈ V) | |
4 | 3 | adantl 482 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) → 𝐴 ∈ V) |
5 | inex1g 5121 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∩ 𝒫 𝐴) ∈ V) | |
6 | uniexg 7332 | . . . . . 6 ⊢ ((𝐵 ∩ 𝒫 𝐴) ∈ V → ∪ (𝐵 ∩ 𝒫 𝐴) ∈ V) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → ∪ (𝐵 ∩ 𝒫 𝐴) ∈ V) |
8 | ssexg 5125 | . . . . 5 ⊢ ((𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴) ∧ ∪ (𝐵 ∩ 𝒫 𝐴) ∈ V) → 𝐴 ∈ V) | |
9 | 7, 8 | sylan2 592 | . . . 4 ⊢ ((𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴) ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) |
10 | 9 | ancoms 459 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴)) → 𝐴 ∈ V) |
11 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
12 | pweq 4462 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
13 | 12 | ineq2d 4115 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝐴)) |
14 | 13 | unieqd 4761 | . . . . 5 ⊢ (𝑥 = 𝐴 → ∪ (𝐵 ∩ 𝒫 𝑥) = ∪ (𝐵 ∩ 𝒫 𝐴)) |
15 | 11, 14 | sseq12d 3927 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
16 | 15 | elabg 3607 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
17 | 4, 10, 16 | pm5.21nd 798 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
18 | 2, 17 | bitrd 280 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 = wceq 1525 ∈ wcel 2083 {cab 2777 Vcvv 3440 ∩ cin 3864 ⊆ wss 3865 𝒫 cpw 4459 ∪ cuni 4751 ‘cfv 6232 topGenctg 16544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-sbc 3712 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-br 4969 df-opab 5031 df-mpt 5048 df-id 5355 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-iota 6196 df-fun 6234 df-fv 6240 df-topgen 16550 |
This theorem is referenced by: eltg4i 21256 eltg3i 21257 bastg 21262 tgss 21264 eltop 21270 tgqtop 22008 isfne4 33299 |
Copyright terms: Public domain | W3C validator |