MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltg Structured version   Visualization version   GIF version

Theorem eltg 22015
Description: Membership in a topology generated by a basis. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
eltg (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))

Proof of Theorem eltg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tgval 22013 . . 3 (𝐵𝑉 → (topGen‘𝐵) = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
21eleq2d 2824 . 2 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ∈ {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)}))
3 elex 3440 . . . 4 (𝐴 ∈ {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} → 𝐴 ∈ V)
43adantl 481 . . 3 ((𝐵𝑉𝐴 ∈ {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)}) → 𝐴 ∈ V)
5 inex1g 5238 . . . . . 6 (𝐵𝑉 → (𝐵 ∩ 𝒫 𝐴) ∈ V)
65uniexd 7573 . . . . 5 (𝐵𝑉 (𝐵 ∩ 𝒫 𝐴) ∈ V)
7 ssexg 5242 . . . . 5 ((𝐴 (𝐵 ∩ 𝒫 𝐴) ∧ (𝐵 ∩ 𝒫 𝐴) ∈ V) → 𝐴 ∈ V)
86, 7sylan2 592 . . . 4 ((𝐴 (𝐵 ∩ 𝒫 𝐴) ∧ 𝐵𝑉) → 𝐴 ∈ V)
98ancoms 458 . . 3 ((𝐵𝑉𝐴 (𝐵 ∩ 𝒫 𝐴)) → 𝐴 ∈ V)
10 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
11 pweq 4546 . . . . . . 7 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
1211ineq2d 4143 . . . . . 6 (𝑥 = 𝐴 → (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝐴))
1312unieqd 4850 . . . . 5 (𝑥 = 𝐴 (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝐴))
1410, 13sseq12d 3950 . . . 4 (𝑥 = 𝐴 → (𝑥 (𝐵 ∩ 𝒫 𝑥) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
1514elabg 3600 . . 3 (𝐴 ∈ V → (𝐴 ∈ {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
164, 9, 15pm5.21nd 798 . 2 (𝐵𝑉 → (𝐴 ∈ {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
172, 16bitrd 278 1 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  {cab 2715  Vcvv 3422  cin 3882  wss 3883  𝒫 cpw 4530   cuni 4836  cfv 6418  topGenctg 17065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-topgen 17071
This theorem is referenced by:  eltg4i  22018  eltg3i  22019  bastg  22024  tgss  22026  eltop  22032  tgqtop  22771  isfne4  34456
  Copyright terms: Public domain W3C validator