| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eltg | Structured version Visualization version GIF version | ||
| Description: Membership in a topology generated by a basis. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| eltg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgval 22858 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) | |
| 2 | 1 | eleq2d 2814 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)})) |
| 3 | elex 3459 | . . . 4 ⊢ (𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} → 𝐴 ∈ V) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) → 𝐴 ∈ V) |
| 5 | inex1g 5261 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∩ 𝒫 𝐴) ∈ V) | |
| 6 | 5 | uniexd 7682 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → ∪ (𝐵 ∩ 𝒫 𝐴) ∈ V) |
| 7 | ssexg 5265 | . . . . 5 ⊢ ((𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴) ∧ ∪ (𝐵 ∩ 𝒫 𝐴) ∈ V) → 𝐴 ∈ V) | |
| 8 | 6, 7 | sylan2 593 | . . . 4 ⊢ ((𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴) ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) |
| 9 | 8 | ancoms 458 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴)) → 𝐴 ∈ V) |
| 10 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 11 | pweq 4567 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 12 | 11 | ineq2d 4173 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝐴)) |
| 13 | 12 | unieqd 4874 | . . . . 5 ⊢ (𝑥 = 𝐴 → ∪ (𝐵 ∩ 𝒫 𝑥) = ∪ (𝐵 ∩ 𝒫 𝐴)) |
| 14 | 10, 13 | sseq12d 3971 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
| 15 | 14 | elabg 3634 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
| 16 | 4, 9, 15 | pm5.21nd 801 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
| 17 | 2, 16 | bitrd 279 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3438 ∩ cin 3904 ⊆ wss 3905 𝒫 cpw 4553 ∪ cuni 4861 ‘cfv 6486 topGenctg 17359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-topgen 17365 |
| This theorem is referenced by: eltg4i 22863 eltg3i 22864 bastg 22869 tgss 22871 eltop 22877 tgqtop 23615 isfne4 36313 |
| Copyright terms: Public domain | W3C validator |