| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eltg | Structured version Visualization version GIF version | ||
| Description: Membership in a topology generated by a basis. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| eltg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgval 22868 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) | |
| 2 | 1 | eleq2d 2817 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)})) |
| 3 | elex 3457 | . . . 4 ⊢ (𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} → 𝐴 ∈ V) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) → 𝐴 ∈ V) |
| 5 | inex1g 5257 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∩ 𝒫 𝐴) ∈ V) | |
| 6 | 5 | uniexd 7675 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → ∪ (𝐵 ∩ 𝒫 𝐴) ∈ V) |
| 7 | ssexg 5261 | . . . . 5 ⊢ ((𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴) ∧ ∪ (𝐵 ∩ 𝒫 𝐴) ∈ V) → 𝐴 ∈ V) | |
| 8 | 6, 7 | sylan2 593 | . . . 4 ⊢ ((𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴) ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) |
| 9 | 8 | ancoms 458 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴)) → 𝐴 ∈ V) |
| 10 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 11 | pweq 4564 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 12 | 11 | ineq2d 4170 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝐴)) |
| 13 | 12 | unieqd 4872 | . . . . 5 ⊢ (𝑥 = 𝐴 → ∪ (𝐵 ∩ 𝒫 𝑥) = ∪ (𝐵 ∩ 𝒫 𝐴)) |
| 14 | 10, 13 | sseq12d 3968 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
| 15 | 14 | elabg 3632 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
| 16 | 4, 9, 15 | pm5.21nd 801 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
| 17 | 2, 16 | bitrd 279 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 {cab 2709 Vcvv 3436 ∩ cin 3901 ⊆ wss 3902 𝒫 cpw 4550 ∪ cuni 4859 ‘cfv 6481 topGenctg 17338 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-topgen 17344 |
| This theorem is referenced by: eltg4i 22873 eltg3i 22874 bastg 22879 tgss 22881 eltop 22887 tgqtop 23625 isfne4 36373 |
| Copyright terms: Public domain | W3C validator |