Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islshpkrN Structured version   Visualization version   GIF version

Theorem islshpkrN 37134
Description: The predicate "is a hyperplane" (of a left module or left vector space). TODO: should it be 𝑈 = (𝐾𝑔) or (𝐾𝑔) = 𝑈 as in lshpkrex 37132? Both standards seem to be used randomly throughout set.mm; we should decide on a preferred one. (Contributed by NM, 7-Oct-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lshpset2.v 𝑉 = (Base‘𝑊)
lshpset2.d 𝐷 = (Scalar‘𝑊)
lshpset2.z 0 = (0g𝐷)
lshpset2.h 𝐻 = (LSHyp‘𝑊)
lshpset2.f 𝐹 = (LFnl‘𝑊)
lshpset2.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
islshpkrN (𝑊 ∈ LVec → (𝑈𝐻 ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))))
Distinct variable groups:   𝑔,𝐹   𝑔,𝐻   𝑔,𝐾   𝑔,𝑉   𝑔,𝑊   𝑈,𝑔
Allowed substitution hints:   𝐷(𝑔)   0 (𝑔)

Proof of Theorem islshpkrN
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lshpset2.v . . . 4 𝑉 = (Base‘𝑊)
2 lshpset2.d . . . 4 𝐷 = (Scalar‘𝑊)
3 lshpset2.z . . . 4 0 = (0g𝐷)
4 lshpset2.h . . . 4 𝐻 = (LSHyp‘𝑊)
5 lshpset2.f . . . 4 𝐹 = (LFnl‘𝑊)
6 lshpset2.k . . . 4 𝐾 = (LKer‘𝑊)
71, 2, 3, 4, 5, 6lshpset2N 37133 . . 3 (𝑊 ∈ LVec → 𝐻 = {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))})
87eleq2d 2824 . 2 (𝑊 ∈ LVec → (𝑈𝐻𝑈 ∈ {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))}))
9 elex 3450 . . . 4 (𝑈 ∈ {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))} → 𝑈 ∈ V)
109adantl 482 . . 3 ((𝑊 ∈ LVec ∧ 𝑈 ∈ {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))}) → 𝑈 ∈ V)
11 fvex 6787 . . . . . . 7 (𝐾𝑔) ∈ V
12 eleq1 2826 . . . . . . 7 (𝑈 = (𝐾𝑔) → (𝑈 ∈ V ↔ (𝐾𝑔) ∈ V))
1311, 12mpbiri 257 . . . . . 6 (𝑈 = (𝐾𝑔) → 𝑈 ∈ V)
1413adantl 482 . . . . 5 ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔)) → 𝑈 ∈ V)
1514rexlimivw 3211 . . . 4 (∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔)) → 𝑈 ∈ V)
1615adantl 482 . . 3 ((𝑊 ∈ LVec ∧ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))) → 𝑈 ∈ V)
17 eqeq1 2742 . . . . . 6 (𝑠 = 𝑈 → (𝑠 = (𝐾𝑔) ↔ 𝑈 = (𝐾𝑔)))
1817anbi2d 629 . . . . 5 (𝑠 = 𝑈 → ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)) ↔ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))))
1918rexbidv 3226 . . . 4 (𝑠 = 𝑈 → (∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)) ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))))
2019elabg 3607 . . 3 (𝑈 ∈ V → (𝑈 ∈ {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))} ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))))
2110, 16, 20pm5.21nd 799 . 2 (𝑊 ∈ LVec → (𝑈 ∈ {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))} ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))))
228, 21bitrd 278 1 (𝑊 ∈ LVec → (𝑈𝐻 ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  wne 2943  wrex 3065  Vcvv 3432  {csn 4561   × cxp 5587  cfv 6433  Basecbs 16912  Scalarcsca 16965  0gc0g 17150  LVecclvec 20364  LSHypclsh 36989  LFnlclfn 37071  LKerclk 37099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cntz 18923  df-lsm 19241  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365  df-lshyp 36991  df-lfl 37072  df-lkr 37100
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator