| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islshpkrN | Structured version Visualization version GIF version | ||
| Description: The predicate "is a hyperplane" (of a left module or left vector space). TODO: should it be 𝑈 = (𝐾‘𝑔) or (𝐾‘𝑔) = 𝑈 as in lshpkrex 39082? Both standards seem to be used randomly throughout set.mm; we should decide on a preferred one. (Contributed by NM, 7-Oct-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lshpset2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lshpset2.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lshpset2.z | ⊢ 0 = (0g‘𝐷) |
| lshpset2.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
| lshpset2.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lshpset2.k | ⊢ 𝐾 = (LKer‘𝑊) |
| Ref | Expression |
|---|---|
| islshpkrN | ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lshpset2.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lshpset2.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 3 | lshpset2.z | . . . 4 ⊢ 0 = (0g‘𝐷) | |
| 4 | lshpset2.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
| 5 | lshpset2.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 6 | lshpset2.k | . . . 4 ⊢ 𝐾 = (LKer‘𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | lshpset2N 39083 | . . 3 ⊢ (𝑊 ∈ LVec → 𝐻 = {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))}) |
| 8 | 7 | eleq2d 2820 | . 2 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ 𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))})) |
| 9 | elex 3480 | . . . 4 ⊢ (𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))} → 𝑈 ∈ V) | |
| 10 | 9 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))}) → 𝑈 ∈ V) |
| 11 | fvex 6888 | . . . . . . 7 ⊢ (𝐾‘𝑔) ∈ V | |
| 12 | eleq1 2822 | . . . . . . 7 ⊢ (𝑈 = (𝐾‘𝑔) → (𝑈 ∈ V ↔ (𝐾‘𝑔) ∈ V)) | |
| 13 | 11, 12 | mpbiri 258 | . . . . . 6 ⊢ (𝑈 = (𝐾‘𝑔) → 𝑈 ∈ V) |
| 14 | 13 | adantl 481 | . . . . 5 ⊢ ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)) → 𝑈 ∈ V) |
| 15 | 14 | rexlimivw 3137 | . . . 4 ⊢ (∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)) → 𝑈 ∈ V) |
| 16 | 15 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔))) → 𝑈 ∈ V) |
| 17 | eqeq1 2739 | . . . . . 6 ⊢ (𝑠 = 𝑈 → (𝑠 = (𝐾‘𝑔) ↔ 𝑈 = (𝐾‘𝑔))) | |
| 18 | 17 | anbi2d 630 | . . . . 5 ⊢ (𝑠 = 𝑈 → ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔)) ↔ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
| 19 | 18 | rexbidv 3164 | . . . 4 ⊢ (𝑠 = 𝑈 → (∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔)) ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
| 20 | 19 | elabg 3655 | . . 3 ⊢ (𝑈 ∈ V → (𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))} ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
| 21 | 10, 16, 20 | pm5.21nd 801 | . 2 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))} ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
| 22 | 8, 21 | bitrd 279 | 1 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 ≠ wne 2932 ∃wrex 3060 Vcvv 3459 {csn 4601 × cxp 5652 ‘cfv 6530 Basecbs 17226 Scalarcsca 17272 0gc0g 17451 LVecclvec 21058 LSHypclsh 38939 LFnlclfn 39021 LKerclk 39049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-tpos 8223 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-grp 18917 df-minusg 18918 df-sbg 18919 df-subg 19104 df-cntz 19298 df-lsm 19615 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 df-oppr 20295 df-dvdsr 20315 df-unit 20316 df-invr 20346 df-drng 20689 df-lmod 20817 df-lss 20887 df-lsp 20927 df-lvec 21059 df-lshyp 38941 df-lfl 39022 df-lkr 39050 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |