Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islshpkrN Structured version   Visualization version   GIF version

Theorem islshpkrN 37061
Description: The predicate "is a hyperplane" (of a left module or left vector space). TODO: should it be 𝑈 = (𝐾𝑔) or (𝐾𝑔) = 𝑈 as in lshpkrex 37059? Both standards seem to be used randomly throughout set.mm; we should decide on a preferred one. (Contributed by NM, 7-Oct-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lshpset2.v 𝑉 = (Base‘𝑊)
lshpset2.d 𝐷 = (Scalar‘𝑊)
lshpset2.z 0 = (0g𝐷)
lshpset2.h 𝐻 = (LSHyp‘𝑊)
lshpset2.f 𝐹 = (LFnl‘𝑊)
lshpset2.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
islshpkrN (𝑊 ∈ LVec → (𝑈𝐻 ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))))
Distinct variable groups:   𝑔,𝐹   𝑔,𝐻   𝑔,𝐾   𝑔,𝑉   𝑔,𝑊   𝑈,𝑔
Allowed substitution hints:   𝐷(𝑔)   0 (𝑔)

Proof of Theorem islshpkrN
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lshpset2.v . . . 4 𝑉 = (Base‘𝑊)
2 lshpset2.d . . . 4 𝐷 = (Scalar‘𝑊)
3 lshpset2.z . . . 4 0 = (0g𝐷)
4 lshpset2.h . . . 4 𝐻 = (LSHyp‘𝑊)
5 lshpset2.f . . . 4 𝐹 = (LFnl‘𝑊)
6 lshpset2.k . . . 4 𝐾 = (LKer‘𝑊)
71, 2, 3, 4, 5, 6lshpset2N 37060 . . 3 (𝑊 ∈ LVec → 𝐻 = {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))})
87eleq2d 2824 . 2 (𝑊 ∈ LVec → (𝑈𝐻𝑈 ∈ {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))}))
9 elex 3440 . . . 4 (𝑈 ∈ {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))} → 𝑈 ∈ V)
109adantl 481 . . 3 ((𝑊 ∈ LVec ∧ 𝑈 ∈ {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))}) → 𝑈 ∈ V)
11 fvex 6769 . . . . . . 7 (𝐾𝑔) ∈ V
12 eleq1 2826 . . . . . . 7 (𝑈 = (𝐾𝑔) → (𝑈 ∈ V ↔ (𝐾𝑔) ∈ V))
1311, 12mpbiri 257 . . . . . 6 (𝑈 = (𝐾𝑔) → 𝑈 ∈ V)
1413adantl 481 . . . . 5 ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔)) → 𝑈 ∈ V)
1514rexlimivw 3210 . . . 4 (∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔)) → 𝑈 ∈ V)
1615adantl 481 . . 3 ((𝑊 ∈ LVec ∧ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))) → 𝑈 ∈ V)
17 eqeq1 2742 . . . . . 6 (𝑠 = 𝑈 → (𝑠 = (𝐾𝑔) ↔ 𝑈 = (𝐾𝑔)))
1817anbi2d 628 . . . . 5 (𝑠 = 𝑈 → ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)) ↔ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))))
1918rexbidv 3225 . . . 4 (𝑠 = 𝑈 → (∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)) ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))))
2019elabg 3600 . . 3 (𝑈 ∈ V → (𝑈 ∈ {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))} ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))))
2110, 16, 20pm5.21nd 798 . 2 (𝑊 ∈ LVec → (𝑈 ∈ {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))} ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))))
228, 21bitrd 278 1 (𝑊 ∈ LVec → (𝑈𝐻 ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wrex 3064  Vcvv 3422  {csn 4558   × cxp 5578  cfv 6418  Basecbs 16840  Scalarcsca 16891  0gc0g 17067  LVecclvec 20279  LSHypclsh 36916  LFnlclfn 36998  LKerclk 37026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280  df-lshyp 36918  df-lfl 36999  df-lkr 37027
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator