Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islshpkrN Structured version   Visualization version   GIF version

Theorem islshpkrN 39120
Description: The predicate "is a hyperplane" (of a left module or left vector space). TODO: should it be 𝑈 = (𝐾𝑔) or (𝐾𝑔) = 𝑈 as in lshpkrex 39118? Both standards seem to be used randomly throughout set.mm; we should decide on a preferred one. (Contributed by NM, 7-Oct-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lshpset2.v 𝑉 = (Base‘𝑊)
lshpset2.d 𝐷 = (Scalar‘𝑊)
lshpset2.z 0 = (0g𝐷)
lshpset2.h 𝐻 = (LSHyp‘𝑊)
lshpset2.f 𝐹 = (LFnl‘𝑊)
lshpset2.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
islshpkrN (𝑊 ∈ LVec → (𝑈𝐻 ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))))
Distinct variable groups:   𝑔,𝐹   𝑔,𝐻   𝑔,𝐾   𝑔,𝑉   𝑔,𝑊   𝑈,𝑔
Allowed substitution hints:   𝐷(𝑔)   0 (𝑔)

Proof of Theorem islshpkrN
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lshpset2.v . . . 4 𝑉 = (Base‘𝑊)
2 lshpset2.d . . . 4 𝐷 = (Scalar‘𝑊)
3 lshpset2.z . . . 4 0 = (0g𝐷)
4 lshpset2.h . . . 4 𝐻 = (LSHyp‘𝑊)
5 lshpset2.f . . . 4 𝐹 = (LFnl‘𝑊)
6 lshpset2.k . . . 4 𝐾 = (LKer‘𝑊)
71, 2, 3, 4, 5, 6lshpset2N 39119 . . 3 (𝑊 ∈ LVec → 𝐻 = {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))})
87eleq2d 2815 . 2 (𝑊 ∈ LVec → (𝑈𝐻𝑈 ∈ {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))}))
9 elex 3471 . . . 4 (𝑈 ∈ {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))} → 𝑈 ∈ V)
109adantl 481 . . 3 ((𝑊 ∈ LVec ∧ 𝑈 ∈ {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))}) → 𝑈 ∈ V)
11 fvex 6874 . . . . . . 7 (𝐾𝑔) ∈ V
12 eleq1 2817 . . . . . . 7 (𝑈 = (𝐾𝑔) → (𝑈 ∈ V ↔ (𝐾𝑔) ∈ V))
1311, 12mpbiri 258 . . . . . 6 (𝑈 = (𝐾𝑔) → 𝑈 ∈ V)
1413adantl 481 . . . . 5 ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔)) → 𝑈 ∈ V)
1514rexlimivw 3131 . . . 4 (∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔)) → 𝑈 ∈ V)
1615adantl 481 . . 3 ((𝑊 ∈ LVec ∧ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))) → 𝑈 ∈ V)
17 eqeq1 2734 . . . . . 6 (𝑠 = 𝑈 → (𝑠 = (𝐾𝑔) ↔ 𝑈 = (𝐾𝑔)))
1817anbi2d 630 . . . . 5 (𝑠 = 𝑈 → ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)) ↔ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))))
1918rexbidv 3158 . . . 4 (𝑠 = 𝑈 → (∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)) ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))))
2019elabg 3646 . . 3 (𝑈 ∈ V → (𝑈 ∈ {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))} ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))))
2110, 16, 20pm5.21nd 801 . 2 (𝑊 ∈ LVec → (𝑈 ∈ {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))} ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))))
228, 21bitrd 279 1 (𝑊 ∈ LVec → (𝑈𝐻 ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾𝑔))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  wne 2926  wrex 3054  Vcvv 3450  {csn 4592   × cxp 5639  cfv 6514  Basecbs 17186  Scalarcsca 17230  0gc0g 17409  LVecclvec 21016  LSHypclsh 38975  LFnlclfn 39057  LKerclk 39085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cntz 19256  df-lsm 19573  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lvec 21017  df-lshyp 38977  df-lfl 39058  df-lkr 39086
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator