Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > islshpkrN | Structured version Visualization version GIF version |
Description: The predicate "is a hyperplane" (of a left module or left vector space). TODO: should it be 𝑈 = (𝐾‘𝑔) or (𝐾‘𝑔) = 𝑈 as in lshpkrex 36869? Both standards seem to be used randomly throughout set.mm; we should decide on a preferred one. (Contributed by NM, 7-Oct-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lshpset2.v | ⊢ 𝑉 = (Base‘𝑊) |
lshpset2.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lshpset2.z | ⊢ 0 = (0g‘𝐷) |
lshpset2.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lshpset2.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lshpset2.k | ⊢ 𝐾 = (LKer‘𝑊) |
Ref | Expression |
---|---|
islshpkrN | ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpset2.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lshpset2.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
3 | lshpset2.z | . . . 4 ⊢ 0 = (0g‘𝐷) | |
4 | lshpset2.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
5 | lshpset2.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
6 | lshpset2.k | . . . 4 ⊢ 𝐾 = (LKer‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | lshpset2N 36870 | . . 3 ⊢ (𝑊 ∈ LVec → 𝐻 = {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))}) |
8 | 7 | eleq2d 2823 | . 2 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ 𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))})) |
9 | elex 3426 | . . . 4 ⊢ (𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))} → 𝑈 ∈ V) | |
10 | 9 | adantl 485 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))}) → 𝑈 ∈ V) |
11 | fvex 6730 | . . . . . . 7 ⊢ (𝐾‘𝑔) ∈ V | |
12 | eleq1 2825 | . . . . . . 7 ⊢ (𝑈 = (𝐾‘𝑔) → (𝑈 ∈ V ↔ (𝐾‘𝑔) ∈ V)) | |
13 | 11, 12 | mpbiri 261 | . . . . . 6 ⊢ (𝑈 = (𝐾‘𝑔) → 𝑈 ∈ V) |
14 | 13 | adantl 485 | . . . . 5 ⊢ ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)) → 𝑈 ∈ V) |
15 | 14 | rexlimivw 3201 | . . . 4 ⊢ (∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)) → 𝑈 ∈ V) |
16 | 15 | adantl 485 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔))) → 𝑈 ∈ V) |
17 | eqeq1 2741 | . . . . . 6 ⊢ (𝑠 = 𝑈 → (𝑠 = (𝐾‘𝑔) ↔ 𝑈 = (𝐾‘𝑔))) | |
18 | 17 | anbi2d 632 | . . . . 5 ⊢ (𝑠 = 𝑈 → ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔)) ↔ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
19 | 18 | rexbidv 3216 | . . . 4 ⊢ (𝑠 = 𝑈 → (∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔)) ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
20 | 19 | elabg 3585 | . . 3 ⊢ (𝑈 ∈ V → (𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))} ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
21 | 10, 16, 20 | pm5.21nd 802 | . 2 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))} ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
22 | 8, 21 | bitrd 282 | 1 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 {cab 2714 ≠ wne 2940 ∃wrex 3062 Vcvv 3408 {csn 4541 × cxp 5549 ‘cfv 6380 Basecbs 16760 Scalarcsca 16805 0gc0g 16944 LVecclvec 20139 LSHypclsh 36726 LFnlclfn 36808 LKerclk 36836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-tpos 7968 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-grp 18368 df-minusg 18369 df-sbg 18370 df-subg 18540 df-cntz 18711 df-lsm 19025 df-cmn 19172 df-abl 19173 df-mgp 19505 df-ur 19517 df-ring 19564 df-oppr 19641 df-dvdsr 19659 df-unit 19660 df-invr 19690 df-drng 19769 df-lmod 19901 df-lss 19969 df-lsp 20009 df-lvec 20140 df-lshyp 36728 df-lfl 36809 df-lkr 36837 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |