| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islshpkrN | Structured version Visualization version GIF version | ||
| Description: The predicate "is a hyperplane" (of a left module or left vector space). TODO: should it be 𝑈 = (𝐾‘𝑔) or (𝐾‘𝑔) = 𝑈 as in lshpkrex 39094? Both standards seem to be used randomly throughout set.mm; we should decide on a preferred one. (Contributed by NM, 7-Oct-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lshpset2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lshpset2.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lshpset2.z | ⊢ 0 = (0g‘𝐷) |
| lshpset2.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
| lshpset2.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lshpset2.k | ⊢ 𝐾 = (LKer‘𝑊) |
| Ref | Expression |
|---|---|
| islshpkrN | ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lshpset2.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lshpset2.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 3 | lshpset2.z | . . . 4 ⊢ 0 = (0g‘𝐷) | |
| 4 | lshpset2.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
| 5 | lshpset2.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 6 | lshpset2.k | . . . 4 ⊢ 𝐾 = (LKer‘𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | lshpset2N 39095 | . . 3 ⊢ (𝑊 ∈ LVec → 𝐻 = {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))}) |
| 8 | 7 | eleq2d 2819 | . 2 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ 𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))})) |
| 9 | elex 3484 | . . . 4 ⊢ (𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))} → 𝑈 ∈ V) | |
| 10 | 9 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))}) → 𝑈 ∈ V) |
| 11 | fvex 6899 | . . . . . . 7 ⊢ (𝐾‘𝑔) ∈ V | |
| 12 | eleq1 2821 | . . . . . . 7 ⊢ (𝑈 = (𝐾‘𝑔) → (𝑈 ∈ V ↔ (𝐾‘𝑔) ∈ V)) | |
| 13 | 11, 12 | mpbiri 258 | . . . . . 6 ⊢ (𝑈 = (𝐾‘𝑔) → 𝑈 ∈ V) |
| 14 | 13 | adantl 481 | . . . . 5 ⊢ ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)) → 𝑈 ∈ V) |
| 15 | 14 | rexlimivw 3138 | . . . 4 ⊢ (∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)) → 𝑈 ∈ V) |
| 16 | 15 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔))) → 𝑈 ∈ V) |
| 17 | eqeq1 2738 | . . . . . 6 ⊢ (𝑠 = 𝑈 → (𝑠 = (𝐾‘𝑔) ↔ 𝑈 = (𝐾‘𝑔))) | |
| 18 | 17 | anbi2d 630 | . . . . 5 ⊢ (𝑠 = 𝑈 → ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔)) ↔ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
| 19 | 18 | rexbidv 3166 | . . . 4 ⊢ (𝑠 = 𝑈 → (∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔)) ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
| 20 | 19 | elabg 3659 | . . 3 ⊢ (𝑈 ∈ V → (𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))} ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
| 21 | 10, 16, 20 | pm5.21nd 801 | . 2 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))} ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
| 22 | 8, 21 | bitrd 279 | 1 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2712 ≠ wne 2931 ∃wrex 3059 Vcvv 3463 {csn 4606 × cxp 5663 ‘cfv 6541 Basecbs 17230 Scalarcsca 17277 0gc0g 17456 LVecclvec 21070 LSHypclsh 38951 LFnlclfn 39033 LKerclk 39061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-0g 17458 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-cntz 19305 df-lsm 19623 df-cmn 19769 df-abl 19770 df-mgp 20107 df-rng 20119 df-ur 20148 df-ring 20201 df-oppr 20303 df-dvdsr 20326 df-unit 20327 df-invr 20357 df-drng 20700 df-lmod 20829 df-lss 20899 df-lsp 20939 df-lvec 21071 df-lshyp 38953 df-lfl 39034 df-lkr 39062 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |