| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islshpkrN | Structured version Visualization version GIF version | ||
| Description: The predicate "is a hyperplane" (of a left module or left vector space). TODO: should it be 𝑈 = (𝐾‘𝑔) or (𝐾‘𝑔) = 𝑈 as in lshpkrex 39227? Both standards seem to be used randomly throughout set.mm; we should decide on a preferred one. (Contributed by NM, 7-Oct-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lshpset2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lshpset2.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lshpset2.z | ⊢ 0 = (0g‘𝐷) |
| lshpset2.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
| lshpset2.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lshpset2.k | ⊢ 𝐾 = (LKer‘𝑊) |
| Ref | Expression |
|---|---|
| islshpkrN | ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lshpset2.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lshpset2.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 3 | lshpset2.z | . . . 4 ⊢ 0 = (0g‘𝐷) | |
| 4 | lshpset2.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
| 5 | lshpset2.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 6 | lshpset2.k | . . . 4 ⊢ 𝐾 = (LKer‘𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | lshpset2N 39228 | . . 3 ⊢ (𝑊 ∈ LVec → 𝐻 = {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))}) |
| 8 | 7 | eleq2d 2819 | . 2 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ 𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))})) |
| 9 | elex 3459 | . . . 4 ⊢ (𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))} → 𝑈 ∈ V) | |
| 10 | 9 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))}) → 𝑈 ∈ V) |
| 11 | fvex 6844 | . . . . . . 7 ⊢ (𝐾‘𝑔) ∈ V | |
| 12 | eleq1 2821 | . . . . . . 7 ⊢ (𝑈 = (𝐾‘𝑔) → (𝑈 ∈ V ↔ (𝐾‘𝑔) ∈ V)) | |
| 13 | 11, 12 | mpbiri 258 | . . . . . 6 ⊢ (𝑈 = (𝐾‘𝑔) → 𝑈 ∈ V) |
| 14 | 13 | adantl 481 | . . . . 5 ⊢ ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)) → 𝑈 ∈ V) |
| 15 | 14 | rexlimivw 3131 | . . . 4 ⊢ (∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)) → 𝑈 ∈ V) |
| 16 | 15 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔))) → 𝑈 ∈ V) |
| 17 | eqeq1 2737 | . . . . . 6 ⊢ (𝑠 = 𝑈 → (𝑠 = (𝐾‘𝑔) ↔ 𝑈 = (𝐾‘𝑔))) | |
| 18 | 17 | anbi2d 630 | . . . . 5 ⊢ (𝑠 = 𝑈 → ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔)) ↔ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
| 19 | 18 | rexbidv 3158 | . . . 4 ⊢ (𝑠 = 𝑈 → (∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔)) ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
| 20 | 19 | elabg 3629 | . . 3 ⊢ (𝑈 ∈ V → (𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))} ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
| 21 | 10, 16, 20 | pm5.21nd 801 | . 2 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))} ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
| 22 | 8, 21 | bitrd 279 | 1 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {cab 2711 ≠ wne 2930 ∃wrex 3058 Vcvv 3438 {csn 4577 × cxp 5619 ‘cfv 6489 Basecbs 17130 Scalarcsca 17174 0gc0g 17353 LVecclvec 21046 LSHypclsh 39084 LFnlclfn 39166 LKerclk 39194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-0g 17355 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-submnd 18702 df-grp 18859 df-minusg 18860 df-sbg 18861 df-subg 19046 df-cntz 19239 df-lsm 19558 df-cmn 19704 df-abl 19705 df-mgp 20069 df-rng 20081 df-ur 20110 df-ring 20163 df-oppr 20265 df-dvdsr 20285 df-unit 20286 df-invr 20316 df-drng 20656 df-lmod 20805 df-lss 20875 df-lsp 20915 df-lvec 21047 df-lshyp 39086 df-lfl 39167 df-lkr 39195 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |