![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eltg2 | Structured version Visualization version GIF version |
Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
eltg2 | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgval2 22984 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑧 ∣ (𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))}) | |
2 | 1 | eleq2d 2830 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ∈ {𝑧 ∣ (𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))})) |
3 | elex 3509 | . . . 4 ⊢ (𝐴 ∈ {𝑧 ∣ (𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))} → 𝐴 ∈ V) | |
4 | 3 | adantl 481 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ {𝑧 ∣ (𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))}) → 𝐴 ∈ V) |
5 | uniexg 7775 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → ∪ 𝐵 ∈ V) | |
6 | ssexg 5341 | . . . . . 6 ⊢ ((𝐴 ⊆ ∪ 𝐵 ∧ ∪ 𝐵 ∈ V) → 𝐴 ∈ V) | |
7 | 5, 6 | sylan2 592 | . . . . 5 ⊢ ((𝐴 ⊆ ∪ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) |
8 | 7 | ancoms 458 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝐵) → 𝐴 ∈ V) |
9 | 8 | adantrr 716 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) → 𝐴 ∈ V) |
10 | sseq1 4034 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑧 ⊆ ∪ 𝐵 ↔ 𝐴 ⊆ ∪ 𝐵)) | |
11 | sseq2 4035 | . . . . . . . 8 ⊢ (𝑧 = 𝐴 → (𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ 𝐴)) | |
12 | 11 | anbi2d 629 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧) ↔ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
13 | 12 | rexbidv 3185 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧) ↔ ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
14 | 13 | raleqbi1dv 3346 | . . . . 5 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
15 | 10, 14 | anbi12d 631 | . . . 4 ⊢ (𝑧 = 𝐴 → ((𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧)) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) |
16 | 15 | elabg 3690 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝑧 ∣ (𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))} ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) |
17 | 4, 9, 16 | pm5.21nd 801 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝑧 ∣ (𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))} ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) |
18 | 2, 17 | bitrd 279 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ⊆ wss 3976 ∪ cuni 4931 ‘cfv 6573 topGenctg 17497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-topgen 17503 |
This theorem is referenced by: eltg2b 22987 tg1 22992 tgcl 22997 elmopn 24473 psmetutop 24601 |
Copyright terms: Public domain | W3C validator |