MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltg2 Structured version   Visualization version   GIF version

Theorem eltg2 22153
Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
eltg2 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑉,𝑦

Proof of Theorem eltg2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tgval2 22151 . . 3 (𝐵𝑉 → (topGen‘𝐵) = {𝑧 ∣ (𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧))})
21eleq2d 2822 . 2 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ∈ {𝑧 ∣ (𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧))}))
3 elex 3455 . . . 4 (𝐴 ∈ {𝑧 ∣ (𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧))} → 𝐴 ∈ V)
43adantl 483 . . 3 ((𝐵𝑉𝐴 ∈ {𝑧 ∣ (𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧))}) → 𝐴 ∈ V)
5 uniexg 7625 . . . . . 6 (𝐵𝑉 𝐵 ∈ V)
6 ssexg 5256 . . . . . 6 ((𝐴 𝐵 𝐵 ∈ V) → 𝐴 ∈ V)
75, 6sylan2 594 . . . . 5 ((𝐴 𝐵𝐵𝑉) → 𝐴 ∈ V)
87ancoms 460 . . . 4 ((𝐵𝑉𝐴 𝐵) → 𝐴 ∈ V)
98adantrr 715 . . 3 ((𝐵𝑉 ∧ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))) → 𝐴 ∈ V)
10 sseq1 3951 . . . . 5 (𝑧 = 𝐴 → (𝑧 𝐵𝐴 𝐵))
11 sseq2 3952 . . . . . . . 8 (𝑧 = 𝐴 → (𝑦𝑧𝑦𝐴))
1211anbi2d 630 . . . . . . 7 (𝑧 = 𝐴 → ((𝑥𝑦𝑦𝑧) ↔ (𝑥𝑦𝑦𝐴)))
1312rexbidv 3172 . . . . . 6 (𝑧 = 𝐴 → (∃𝑦𝐵 (𝑥𝑦𝑦𝑧) ↔ ∃𝑦𝐵 (𝑥𝑦𝑦𝐴)))
1413raleqbi1dv 3352 . . . . 5 (𝑧 = 𝐴 → (∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴)))
1510, 14anbi12d 632 . . . 4 (𝑧 = 𝐴 → ((𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧)) ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
1615elabg 3612 . . 3 (𝐴 ∈ V → (𝐴 ∈ {𝑧 ∣ (𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧))} ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
174, 9, 16pm5.21nd 800 . 2 (𝐵𝑉 → (𝐴 ∈ {𝑧 ∣ (𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧))} ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
182, 17bitrd 279 1 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  {cab 2713  wral 3062  wrex 3071  Vcvv 3437  wss 3892   cuni 4844  cfv 6458  topGenctg 17193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-iota 6410  df-fun 6460  df-fv 6466  df-topgen 17199
This theorem is referenced by:  eltg2b  22154  tg1  22159  tgcl  22164  elmopn  23640  psmetutop  23768
  Copyright terms: Public domain W3C validator