MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltg2 Structured version   Visualization version   GIF version

Theorem eltg2 21809
Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
eltg2 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑉,𝑦

Proof of Theorem eltg2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tgval2 21807 . . 3 (𝐵𝑉 → (topGen‘𝐵) = {𝑧 ∣ (𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧))})
21eleq2d 2816 . 2 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ∈ {𝑧 ∣ (𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧))}))
3 elex 3416 . . . 4 (𝐴 ∈ {𝑧 ∣ (𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧))} → 𝐴 ∈ V)
43adantl 485 . . 3 ((𝐵𝑉𝐴 ∈ {𝑧 ∣ (𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧))}) → 𝐴 ∈ V)
5 uniexg 7506 . . . . . 6 (𝐵𝑉 𝐵 ∈ V)
6 ssexg 5201 . . . . . 6 ((𝐴 𝐵 𝐵 ∈ V) → 𝐴 ∈ V)
75, 6sylan2 596 . . . . 5 ((𝐴 𝐵𝐵𝑉) → 𝐴 ∈ V)
87ancoms 462 . . . 4 ((𝐵𝑉𝐴 𝐵) → 𝐴 ∈ V)
98adantrr 717 . . 3 ((𝐵𝑉 ∧ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))) → 𝐴 ∈ V)
10 sseq1 3912 . . . . 5 (𝑧 = 𝐴 → (𝑧 𝐵𝐴 𝐵))
11 sseq2 3913 . . . . . . . 8 (𝑧 = 𝐴 → (𝑦𝑧𝑦𝐴))
1211anbi2d 632 . . . . . . 7 (𝑧 = 𝐴 → ((𝑥𝑦𝑦𝑧) ↔ (𝑥𝑦𝑦𝐴)))
1312rexbidv 3206 . . . . . 6 (𝑧 = 𝐴 → (∃𝑦𝐵 (𝑥𝑦𝑦𝑧) ↔ ∃𝑦𝐵 (𝑥𝑦𝑦𝐴)))
1413raleqbi1dv 3307 . . . . 5 (𝑧 = 𝐴 → (∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴)))
1510, 14anbi12d 634 . . . 4 (𝑧 = 𝐴 → ((𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧)) ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
1615elabg 3574 . . 3 (𝐴 ∈ V → (𝐴 ∈ {𝑧 ∣ (𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧))} ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
174, 9, 16pm5.21nd 802 . 2 (𝐵𝑉 → (𝐴 ∈ {𝑧 ∣ (𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧))} ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
182, 17bitrd 282 1 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  {cab 2714  wral 3051  wrex 3052  Vcvv 3398  wss 3853   cuni 4805  cfv 6358  topGenctg 16896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-iota 6316  df-fun 6360  df-fv 6366  df-topgen 16902
This theorem is referenced by:  eltg2b  21810  tg1  21815  tgcl  21820  elmopn  23294  psmetutop  23419
  Copyright terms: Public domain W3C validator