| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eltg2 | Structured version Visualization version GIF version | ||
| Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| eltg2 | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgval2 22963 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑧 ∣ (𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))}) | |
| 2 | 1 | eleq2d 2827 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ∈ {𝑧 ∣ (𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))})) |
| 3 | elex 3501 | . . . 4 ⊢ (𝐴 ∈ {𝑧 ∣ (𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))} → 𝐴 ∈ V) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ {𝑧 ∣ (𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))}) → 𝐴 ∈ V) |
| 5 | uniexg 7760 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → ∪ 𝐵 ∈ V) | |
| 6 | ssexg 5323 | . . . . . 6 ⊢ ((𝐴 ⊆ ∪ 𝐵 ∧ ∪ 𝐵 ∈ V) → 𝐴 ∈ V) | |
| 7 | 5, 6 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ⊆ ∪ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) |
| 8 | 7 | ancoms 458 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝐵) → 𝐴 ∈ V) |
| 9 | 8 | adantrr 717 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) → 𝐴 ∈ V) |
| 10 | sseq1 4009 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑧 ⊆ ∪ 𝐵 ↔ 𝐴 ⊆ ∪ 𝐵)) | |
| 11 | sseq2 4010 | . . . . . . . 8 ⊢ (𝑧 = 𝐴 → (𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ 𝐴)) | |
| 12 | 11 | anbi2d 630 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧) ↔ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
| 13 | 12 | rexbidv 3179 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧) ↔ ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
| 14 | 13 | raleqbi1dv 3338 | . . . . 5 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
| 15 | 10, 14 | anbi12d 632 | . . . 4 ⊢ (𝑧 = 𝐴 → ((𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧)) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) |
| 16 | 15 | elabg 3676 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝑧 ∣ (𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))} ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) |
| 17 | 4, 9, 16 | pm5.21nd 802 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝑧 ∣ (𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))} ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) |
| 18 | 2, 17 | bitrd 279 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2714 ∀wral 3061 ∃wrex 3070 Vcvv 3480 ⊆ wss 3951 ∪ cuni 4907 ‘cfv 6561 topGenctg 17482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-topgen 17488 |
| This theorem is referenced by: eltg2b 22966 tg1 22971 tgcl 22976 elmopn 24452 psmetutop 24580 |
| Copyright terms: Public domain | W3C validator |