MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltg2 Structured version   Visualization version   GIF version

Theorem eltg2 22986
Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
eltg2 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑉,𝑦

Proof of Theorem eltg2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tgval2 22984 . . 3 (𝐵𝑉 → (topGen‘𝐵) = {𝑧 ∣ (𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧))})
21eleq2d 2830 . 2 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ∈ {𝑧 ∣ (𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧))}))
3 elex 3509 . . . 4 (𝐴 ∈ {𝑧 ∣ (𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧))} → 𝐴 ∈ V)
43adantl 481 . . 3 ((𝐵𝑉𝐴 ∈ {𝑧 ∣ (𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧))}) → 𝐴 ∈ V)
5 uniexg 7775 . . . . . 6 (𝐵𝑉 𝐵 ∈ V)
6 ssexg 5341 . . . . . 6 ((𝐴 𝐵 𝐵 ∈ V) → 𝐴 ∈ V)
75, 6sylan2 592 . . . . 5 ((𝐴 𝐵𝐵𝑉) → 𝐴 ∈ V)
87ancoms 458 . . . 4 ((𝐵𝑉𝐴 𝐵) → 𝐴 ∈ V)
98adantrr 716 . . 3 ((𝐵𝑉 ∧ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))) → 𝐴 ∈ V)
10 sseq1 4034 . . . . 5 (𝑧 = 𝐴 → (𝑧 𝐵𝐴 𝐵))
11 sseq2 4035 . . . . . . . 8 (𝑧 = 𝐴 → (𝑦𝑧𝑦𝐴))
1211anbi2d 629 . . . . . . 7 (𝑧 = 𝐴 → ((𝑥𝑦𝑦𝑧) ↔ (𝑥𝑦𝑦𝐴)))
1312rexbidv 3185 . . . . . 6 (𝑧 = 𝐴 → (∃𝑦𝐵 (𝑥𝑦𝑦𝑧) ↔ ∃𝑦𝐵 (𝑥𝑦𝑦𝐴)))
1413raleqbi1dv 3346 . . . . 5 (𝑧 = 𝐴 → (∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴)))
1510, 14anbi12d 631 . . . 4 (𝑧 = 𝐴 → ((𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧)) ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
1615elabg 3690 . . 3 (𝐴 ∈ V → (𝐴 ∈ {𝑧 ∣ (𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧))} ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
174, 9, 16pm5.21nd 801 . 2 (𝐵𝑉 → (𝐴 ∈ {𝑧 ∣ (𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧))} ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
182, 17bitrd 279 1 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  Vcvv 3488  wss 3976   cuni 4931  cfv 6573  topGenctg 17497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-topgen 17503
This theorem is referenced by:  eltg2b  22987  tg1  22992  tgcl  22997  elmopn  24473  psmetutop  24601
  Copyright terms: Public domain W3C validator