| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eltg2 | Structured version Visualization version GIF version | ||
| Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| eltg2 | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgval2 22869 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑧 ∣ (𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))}) | |
| 2 | 1 | eleq2d 2817 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ∈ {𝑧 ∣ (𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))})) |
| 3 | elex 3457 | . . . 4 ⊢ (𝐴 ∈ {𝑧 ∣ (𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))} → 𝐴 ∈ V) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ {𝑧 ∣ (𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))}) → 𝐴 ∈ V) |
| 5 | uniexg 7673 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → ∪ 𝐵 ∈ V) | |
| 6 | ssexg 5261 | . . . . . 6 ⊢ ((𝐴 ⊆ ∪ 𝐵 ∧ ∪ 𝐵 ∈ V) → 𝐴 ∈ V) | |
| 7 | 5, 6 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ⊆ ∪ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) |
| 8 | 7 | ancoms 458 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝐵) → 𝐴 ∈ V) |
| 9 | 8 | adantrr 717 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) → 𝐴 ∈ V) |
| 10 | sseq1 3960 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑧 ⊆ ∪ 𝐵 ↔ 𝐴 ⊆ ∪ 𝐵)) | |
| 11 | sseq2 3961 | . . . . . . . 8 ⊢ (𝑧 = 𝐴 → (𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ 𝐴)) | |
| 12 | 11 | anbi2d 630 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧) ↔ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
| 13 | 12 | rexbidv 3156 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧) ↔ ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
| 14 | 13 | raleqbi1dv 3304 | . . . . 5 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
| 15 | 10, 14 | anbi12d 632 | . . . 4 ⊢ (𝑧 = 𝐴 → ((𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧)) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) |
| 16 | 15 | elabg 3632 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝑧 ∣ (𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))} ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) |
| 17 | 4, 9, 16 | pm5.21nd 801 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝑧 ∣ (𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))} ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) |
| 18 | 2, 17 | bitrd 279 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ⊆ wss 3902 ∪ cuni 4859 ‘cfv 6481 topGenctg 17338 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-topgen 17344 |
| This theorem is referenced by: eltg2b 22872 tg1 22877 tgcl 22882 elmopn 24355 psmetutop 24480 |
| Copyright terms: Public domain | W3C validator |