Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eltg2 | Structured version Visualization version GIF version |
Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
eltg2 | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgval2 22087 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑧 ∣ (𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))}) | |
2 | 1 | eleq2d 2825 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ∈ {𝑧 ∣ (𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))})) |
3 | elex 3448 | . . . 4 ⊢ (𝐴 ∈ {𝑧 ∣ (𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))} → 𝐴 ∈ V) | |
4 | 3 | adantl 481 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ {𝑧 ∣ (𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))}) → 𝐴 ∈ V) |
5 | uniexg 7584 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → ∪ 𝐵 ∈ V) | |
6 | ssexg 5250 | . . . . . 6 ⊢ ((𝐴 ⊆ ∪ 𝐵 ∧ ∪ 𝐵 ∈ V) → 𝐴 ∈ V) | |
7 | 5, 6 | sylan2 592 | . . . . 5 ⊢ ((𝐴 ⊆ ∪ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) |
8 | 7 | ancoms 458 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝐵) → 𝐴 ∈ V) |
9 | 8 | adantrr 713 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) → 𝐴 ∈ V) |
10 | sseq1 3950 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑧 ⊆ ∪ 𝐵 ↔ 𝐴 ⊆ ∪ 𝐵)) | |
11 | sseq2 3951 | . . . . . . . 8 ⊢ (𝑧 = 𝐴 → (𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ 𝐴)) | |
12 | 11 | anbi2d 628 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧) ↔ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
13 | 12 | rexbidv 3227 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧) ↔ ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
14 | 13 | raleqbi1dv 3338 | . . . . 5 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
15 | 10, 14 | anbi12d 630 | . . . 4 ⊢ (𝑧 = 𝐴 → ((𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧)) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) |
16 | 15 | elabg 3608 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝑧 ∣ (𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))} ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) |
17 | 4, 9, 16 | pm5.21nd 798 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝑧 ∣ (𝑧 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧))} ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) |
18 | 2, 17 | bitrd 278 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 {cab 2716 ∀wral 3065 ∃wrex 3066 Vcvv 3430 ⊆ wss 3891 ∪ cuni 4844 ‘cfv 6430 topGenctg 17129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-topgen 17135 |
This theorem is referenced by: eltg2b 22090 tg1 22095 tgcl 22100 elmopn 23576 psmetutop 23704 |
Copyright terms: Public domain | W3C validator |