MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwelem Structured version   Visualization version   GIF version

Theorem fpwwelem 10659
Description: Lemma for fpwwe 10660. (Contributed by Mario Carneiro, 15-May-2015.) (Revised by AV, 20-Jul-2024.)
Hypotheses
Ref Expression
fpwwe.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
fpwwe.2 (𝜑𝐴𝑉)
Assertion
Ref Expression
fpwwelem (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))))
Distinct variable groups:   𝑥,𝑟,𝐴   𝑦,𝑟,𝐹,𝑥   𝜑,𝑟,𝑥,𝑦   𝑅,𝑟,𝑥,𝑦   𝑋,𝑟,𝑥,𝑦   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝑉(𝑥,𝑦,𝑟)

Proof of Theorem fpwwelem
StepHypRef Expression
1 fpwwe.1 . . . . 5 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
21relopabiv 5799 . . . 4 Rel 𝑊
32a1i 11 . . 3 (𝜑 → Rel 𝑊)
4 brrelex12 5706 . . 3 ((Rel 𝑊𝑋𝑊𝑅) → (𝑋 ∈ V ∧ 𝑅 ∈ V))
53, 4sylan 580 . 2 ((𝜑𝑋𝑊𝑅) → (𝑋 ∈ V ∧ 𝑅 ∈ V))
6 fpwwe.2 . . . . 5 (𝜑𝐴𝑉)
76adantr 480 . . . 4 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))) → 𝐴𝑉)
8 simprll 778 . . . 4 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))) → 𝑋𝐴)
97, 8ssexd 5294 . . 3 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))) → 𝑋 ∈ V)
109, 9xpexd 7745 . . . 4 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))) → (𝑋 × 𝑋) ∈ V)
11 simprlr 779 . . . 4 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))) → 𝑅 ⊆ (𝑋 × 𝑋))
1210, 11ssexd 5294 . . 3 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))) → 𝑅 ∈ V)
139, 12jca 511 . 2 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))) → (𝑋 ∈ V ∧ 𝑅 ∈ V))
14 simpl 482 . . . . . 6 ((𝑥 = 𝑋𝑟 = 𝑅) → 𝑥 = 𝑋)
1514sseq1d 3990 . . . . 5 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑥𝐴𝑋𝐴))
16 simpr 484 . . . . . 6 ((𝑥 = 𝑋𝑟 = 𝑅) → 𝑟 = 𝑅)
1714sqxpeqd 5686 . . . . . 6 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑥 × 𝑥) = (𝑋 × 𝑋))
1816, 17sseq12d 3992 . . . . 5 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑅 ⊆ (𝑋 × 𝑋)))
1915, 18anbi12d 632 . . . 4 ((𝑥 = 𝑋𝑟 = 𝑅) → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ↔ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋))))
2016, 14weeq12d 5643 . . . . 5 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑟 We 𝑥𝑅 We 𝑋))
2116cnveqd 5855 . . . . . . . 8 ((𝑥 = 𝑋𝑟 = 𝑅) → 𝑟 = 𝑅)
2221imaeq1d 6046 . . . . . . 7 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑟 “ {𝑦}) = (𝑅 “ {𝑦}))
2322fveqeq2d 6884 . . . . . 6 ((𝑥 = 𝑋𝑟 = 𝑅) → ((𝐹‘(𝑟 “ {𝑦})) = 𝑦 ↔ (𝐹‘(𝑅 “ {𝑦})) = 𝑦))
2414, 23raleqbidv 3325 . . . . 5 ((𝑥 = 𝑋𝑟 = 𝑅) → (∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦 ↔ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))
2520, 24anbi12d 632 . . . 4 ((𝑥 = 𝑋𝑟 = 𝑅) → ((𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦) ↔ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦)))
2619, 25anbi12d 632 . . 3 ((𝑥 = 𝑋𝑟 = 𝑅) → (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦)) ↔ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))))
2726, 1brabga 5509 . 2 ((𝑋 ∈ V ∧ 𝑅 ∈ V) → (𝑋𝑊𝑅 ↔ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))))
285, 13, 27pm5.21nd 801 1 (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  wss 3926  {csn 4601   class class class wbr 5119  {copab 5181   We wwe 5605   × cxp 5652  ccnv 5653  cima 5657  Rel wrel 5659  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fv 6539
This theorem is referenced by:  canth4  10661  canthnumlem  10662  canthp1lem2  10667
  Copyright terms: Public domain W3C validator