MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwelem Structured version   Visualization version   GIF version

Theorem fpwwelem 9724
Description: Lemma for fpwwe 9725. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
fpwwe.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
fpwwe.2 (𝜑𝐴 ∈ V)
Assertion
Ref Expression
fpwwelem (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))))
Distinct variable groups:   𝑥,𝑟,𝐴   𝑦,𝑟,𝐹,𝑥   𝜑,𝑟,𝑥,𝑦   𝑅,𝑟,𝑥,𝑦   𝑋,𝑟,𝑥,𝑦   𝑊,𝑟,𝑥,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem fpwwelem
StepHypRef Expression
1 fpwwe.1 . . . . 5 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
21relopabi 5416 . . . 4 Rel 𝑊
32a1i 11 . . 3 (𝜑 → Rel 𝑊)
4 brrelex12 5326 . . 3 ((Rel 𝑊𝑋𝑊𝑅) → (𝑋 ∈ V ∧ 𝑅 ∈ V))
53, 4sylan 575 . 2 ((𝜑𝑋𝑊𝑅) → (𝑋 ∈ V ∧ 𝑅 ∈ V))
6 fpwwe.2 . . . . 5 (𝜑𝐴 ∈ V)
76adantr 472 . . . 4 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))) → 𝐴 ∈ V)
8 simprll 797 . . . 4 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))) → 𝑋𝐴)
97, 8ssexd 4968 . . 3 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))) → 𝑋 ∈ V)
10 xpexg 7162 . . . . 5 ((𝑋 ∈ V ∧ 𝑋 ∈ V) → (𝑋 × 𝑋) ∈ V)
119, 9, 10syl2anc 579 . . . 4 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))) → (𝑋 × 𝑋) ∈ V)
12 simprlr 798 . . . 4 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))) → 𝑅 ⊆ (𝑋 × 𝑋))
1311, 12ssexd 4968 . . 3 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))) → 𝑅 ∈ V)
149, 13jca 507 . 2 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))) → (𝑋 ∈ V ∧ 𝑅 ∈ V))
15 simpl 474 . . . . . 6 ((𝑥 = 𝑋𝑟 = 𝑅) → 𝑥 = 𝑋)
1615sseq1d 3794 . . . . 5 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑥𝐴𝑋𝐴))
17 simpr 477 . . . . . 6 ((𝑥 = 𝑋𝑟 = 𝑅) → 𝑟 = 𝑅)
1815sqxpeqd 5311 . . . . . 6 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑥 × 𝑥) = (𝑋 × 𝑋))
1917, 18sseq12d 3796 . . . . 5 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑅 ⊆ (𝑋 × 𝑋)))
2016, 19anbi12d 624 . . . 4 ((𝑥 = 𝑋𝑟 = 𝑅) → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ↔ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋))))
21 weeq2 5268 . . . . . 6 (𝑥 = 𝑋 → (𝑟 We 𝑥𝑟 We 𝑋))
22 weeq1 5267 . . . . . 6 (𝑟 = 𝑅 → (𝑟 We 𝑋𝑅 We 𝑋))
2321, 22sylan9bb 505 . . . . 5 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑟 We 𝑥𝑅 We 𝑋))
2417cnveqd 5468 . . . . . . . 8 ((𝑥 = 𝑋𝑟 = 𝑅) → 𝑟 = 𝑅)
2524imaeq1d 5649 . . . . . . 7 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑟 “ {𝑦}) = (𝑅 “ {𝑦}))
2625fveqeq2d 6387 . . . . . 6 ((𝑥 = 𝑋𝑟 = 𝑅) → ((𝐹‘(𝑟 “ {𝑦})) = 𝑦 ↔ (𝐹‘(𝑅 “ {𝑦})) = 𝑦))
2715, 26raleqbidv 3300 . . . . 5 ((𝑥 = 𝑋𝑟 = 𝑅) → (∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦 ↔ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))
2823, 27anbi12d 624 . . . 4 ((𝑥 = 𝑋𝑟 = 𝑅) → ((𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦) ↔ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦)))
2920, 28anbi12d 624 . . 3 ((𝑥 = 𝑋𝑟 = 𝑅) → (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦)) ↔ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))))
3029, 1brabga 5152 . 2 ((𝑋 ∈ V ∧ 𝑅 ∈ V) → (𝑋𝑊𝑅 ↔ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))))
315, 14, 30pm5.21nd 836 1 (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3055  Vcvv 3350  wss 3734  {csn 4336   class class class wbr 4811  {copab 4873   We wwe 5237   × cxp 5277  ccnv 5278  cima 5282  Rel wrel 5284  cfv 6070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-br 4812  df-opab 4874  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fv 6078
This theorem is referenced by:  canth4  9726  canthnumlem  9727  canthp1lem2  9732
  Copyright terms: Public domain W3C validator