| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihatexv2 | Structured version Visualization version GIF version | ||
| Description: There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 17-Aug-2014.) |
| Ref | Expression |
|---|---|
| dihatexv2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dihatexv2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dihatexv2.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dihatexv2.v | ⊢ 𝑉 = (Base‘𝑈) |
| dihatexv2.o | ⊢ 0 = (0g‘𝑈) |
| dihatexv2.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| dihatexv2.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| dihatexv2.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| Ref | Expression |
|---|---|
| dihatexv2 | ⊢ (𝜑 → (𝑄 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑄 = (◡𝐼‘(𝑁‘{𝑥})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | dihatexv2.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | 1, 2 | atbase 39268 | . . 3 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 4 | 3 | anim2i 617 | . 2 ⊢ ((𝜑 ∧ 𝑄 ∈ 𝐴) → (𝜑 ∧ 𝑄 ∈ (Base‘𝐾))) |
| 5 | dihatexv2.k | . . . . . . 7 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 7 | eldifi 4082 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑉 ∖ { 0 }) → 𝑥 ∈ 𝑉) | |
| 8 | dihatexv2.h | . . . . . . . 8 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 9 | dihatexv2.u | . . . . . . . 8 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 10 | dihatexv2.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑈) | |
| 11 | dihatexv2.n | . . . . . . . 8 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 12 | dihatexv2.i | . . . . . . . 8 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 13 | 8, 9, 10, 11, 12 | dihlsprn 41310 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑉) → (𝑁‘{𝑥}) ∈ ran 𝐼) |
| 14 | 5, 7, 13 | syl2an 596 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (𝑁‘{𝑥}) ∈ ran 𝐼) |
| 15 | 1, 8, 12 | dihcnvcl 41250 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁‘{𝑥}) ∈ ran 𝐼) → (◡𝐼‘(𝑁‘{𝑥})) ∈ (Base‘𝐾)) |
| 16 | 6, 14, 15 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (◡𝐼‘(𝑁‘{𝑥})) ∈ (Base‘𝐾)) |
| 17 | eleq1a 2823 | . . . . 5 ⊢ ((◡𝐼‘(𝑁‘{𝑥})) ∈ (Base‘𝐾) → (𝑄 = (◡𝐼‘(𝑁‘{𝑥})) → 𝑄 ∈ (Base‘𝐾))) | |
| 18 | 16, 17 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (𝑄 = (◡𝐼‘(𝑁‘{𝑥})) → 𝑄 ∈ (Base‘𝐾))) |
| 19 | 18 | rexlimdva 3130 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝑄 = (◡𝐼‘(𝑁‘{𝑥})) → 𝑄 ∈ (Base‘𝐾))) |
| 20 | 19 | imdistani 568 | . 2 ⊢ ((𝜑 ∧ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑄 = (◡𝐼‘(𝑁‘{𝑥}))) → (𝜑 ∧ 𝑄 ∈ (Base‘𝐾))) |
| 21 | dihatexv2.o | . . . 4 ⊢ 0 = (0g‘𝑈) | |
| 22 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 23 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) → 𝑄 ∈ (Base‘𝐾)) | |
| 24 | 1, 2, 8, 9, 10, 21, 11, 12, 22, 23 | dihatexv 41317 | . . 3 ⊢ ((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑄 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })(𝐼‘𝑄) = (𝑁‘{𝑥}))) |
| 25 | 22 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 26 | 22, 7, 13 | syl2an 596 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (𝑁‘{𝑥}) ∈ ran 𝐼) |
| 27 | 8, 12 | dihcnvid2 41252 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁‘{𝑥}) ∈ ran 𝐼) → (𝐼‘(◡𝐼‘(𝑁‘{𝑥}))) = (𝑁‘{𝑥})) |
| 28 | 25, 26, 27 | syl2anc 584 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (𝐼‘(◡𝐼‘(𝑁‘{𝑥}))) = (𝑁‘{𝑥})) |
| 29 | 28 | eqeq2d 2740 | . . . . 5 ⊢ (((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → ((𝐼‘𝑄) = (𝐼‘(◡𝐼‘(𝑁‘{𝑥}))) ↔ (𝐼‘𝑄) = (𝑁‘{𝑥}))) |
| 30 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → 𝑄 ∈ (Base‘𝐾)) | |
| 31 | 25, 26, 15 | syl2anc 584 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (◡𝐼‘(𝑁‘{𝑥})) ∈ (Base‘𝐾)) |
| 32 | 1, 8, 12 | dih11 41244 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (◡𝐼‘(𝑁‘{𝑥})) ∈ (Base‘𝐾)) → ((𝐼‘𝑄) = (𝐼‘(◡𝐼‘(𝑁‘{𝑥}))) ↔ 𝑄 = (◡𝐼‘(𝑁‘{𝑥})))) |
| 33 | 25, 30, 31, 32 | syl3anc 1373 | . . . . 5 ⊢ (((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → ((𝐼‘𝑄) = (𝐼‘(◡𝐼‘(𝑁‘{𝑥}))) ↔ 𝑄 = (◡𝐼‘(𝑁‘{𝑥})))) |
| 34 | 29, 33 | bitr3d 281 | . . . 4 ⊢ (((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → ((𝐼‘𝑄) = (𝑁‘{𝑥}) ↔ 𝑄 = (◡𝐼‘(𝑁‘{𝑥})))) |
| 35 | 34 | rexbidva 3151 | . . 3 ⊢ ((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) → (∃𝑥 ∈ (𝑉 ∖ { 0 })(𝐼‘𝑄) = (𝑁‘{𝑥}) ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑄 = (◡𝐼‘(𝑁‘{𝑥})))) |
| 36 | 24, 35 | bitrd 279 | . 2 ⊢ ((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑄 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑄 = (◡𝐼‘(𝑁‘{𝑥})))) |
| 37 | 4, 20, 36 | pm5.21nd 801 | 1 ⊢ (𝜑 → (𝑄 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑄 = (◡𝐼‘(𝑁‘{𝑥})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∖ cdif 3900 {csn 4577 ◡ccnv 5618 ran crn 5620 ‘cfv 6482 Basecbs 17120 0gc0g 17343 LSpanclspn 20874 Atomscatm 39242 HLchlt 39329 LHypclh 39963 DVecHcdvh 41057 DIsoHcdih 41207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-riotaBAD 38932 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-undef 8206 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-0g 17345 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-cntz 19196 df-lsm 19515 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-drng 20616 df-lmod 20765 df-lss 20835 df-lsp 20875 df-lvec 21007 df-lsatoms 38955 df-oposet 39155 df-ol 39157 df-oml 39158 df-covers 39245 df-ats 39246 df-atl 39277 df-cvlat 39301 df-hlat 39330 df-llines 39477 df-lplanes 39478 df-lvols 39479 df-lines 39480 df-psubsp 39482 df-pmap 39483 df-padd 39775 df-lhyp 39967 df-laut 39968 df-ldil 40083 df-ltrn 40084 df-trl 40138 df-tendo 40734 df-edring 40736 df-disoa 41008 df-dvech 41058 df-dib 41118 df-dic 41152 df-dih 41208 |
| This theorem is referenced by: djhcvat42 41394 |
| Copyright terms: Public domain | W3C validator |