| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihatexv2 | Structured version Visualization version GIF version | ||
| Description: There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 17-Aug-2014.) |
| Ref | Expression |
|---|---|
| dihatexv2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dihatexv2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dihatexv2.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dihatexv2.v | ⊢ 𝑉 = (Base‘𝑈) |
| dihatexv2.o | ⊢ 0 = (0g‘𝑈) |
| dihatexv2.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| dihatexv2.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| dihatexv2.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| Ref | Expression |
|---|---|
| dihatexv2 | ⊢ (𝜑 → (𝑄 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑄 = (◡𝐼‘(𝑁‘{𝑥})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | dihatexv2.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | 1, 2 | atbase 39336 | . . 3 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 4 | 3 | anim2i 617 | . 2 ⊢ ((𝜑 ∧ 𝑄 ∈ 𝐴) → (𝜑 ∧ 𝑄 ∈ (Base‘𝐾))) |
| 5 | dihatexv2.k | . . . . . . 7 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 7 | eldifi 4078 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑉 ∖ { 0 }) → 𝑥 ∈ 𝑉) | |
| 8 | dihatexv2.h | . . . . . . . 8 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 9 | dihatexv2.u | . . . . . . . 8 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 10 | dihatexv2.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑈) | |
| 11 | dihatexv2.n | . . . . . . . 8 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 12 | dihatexv2.i | . . . . . . . 8 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 13 | 8, 9, 10, 11, 12 | dihlsprn 41378 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑉) → (𝑁‘{𝑥}) ∈ ran 𝐼) |
| 14 | 5, 7, 13 | syl2an 596 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (𝑁‘{𝑥}) ∈ ran 𝐼) |
| 15 | 1, 8, 12 | dihcnvcl 41318 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁‘{𝑥}) ∈ ran 𝐼) → (◡𝐼‘(𝑁‘{𝑥})) ∈ (Base‘𝐾)) |
| 16 | 6, 14, 15 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (◡𝐼‘(𝑁‘{𝑥})) ∈ (Base‘𝐾)) |
| 17 | eleq1a 2826 | . . . . 5 ⊢ ((◡𝐼‘(𝑁‘{𝑥})) ∈ (Base‘𝐾) → (𝑄 = (◡𝐼‘(𝑁‘{𝑥})) → 𝑄 ∈ (Base‘𝐾))) | |
| 18 | 16, 17 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (𝑄 = (◡𝐼‘(𝑁‘{𝑥})) → 𝑄 ∈ (Base‘𝐾))) |
| 19 | 18 | rexlimdva 3133 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝑄 = (◡𝐼‘(𝑁‘{𝑥})) → 𝑄 ∈ (Base‘𝐾))) |
| 20 | 19 | imdistani 568 | . 2 ⊢ ((𝜑 ∧ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑄 = (◡𝐼‘(𝑁‘{𝑥}))) → (𝜑 ∧ 𝑄 ∈ (Base‘𝐾))) |
| 21 | dihatexv2.o | . . . 4 ⊢ 0 = (0g‘𝑈) | |
| 22 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 23 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) → 𝑄 ∈ (Base‘𝐾)) | |
| 24 | 1, 2, 8, 9, 10, 21, 11, 12, 22, 23 | dihatexv 41385 | . . 3 ⊢ ((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑄 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })(𝐼‘𝑄) = (𝑁‘{𝑥}))) |
| 25 | 22 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 26 | 22, 7, 13 | syl2an 596 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (𝑁‘{𝑥}) ∈ ran 𝐼) |
| 27 | 8, 12 | dihcnvid2 41320 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁‘{𝑥}) ∈ ran 𝐼) → (𝐼‘(◡𝐼‘(𝑁‘{𝑥}))) = (𝑁‘{𝑥})) |
| 28 | 25, 26, 27 | syl2anc 584 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (𝐼‘(◡𝐼‘(𝑁‘{𝑥}))) = (𝑁‘{𝑥})) |
| 29 | 28 | eqeq2d 2742 | . . . . 5 ⊢ (((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → ((𝐼‘𝑄) = (𝐼‘(◡𝐼‘(𝑁‘{𝑥}))) ↔ (𝐼‘𝑄) = (𝑁‘{𝑥}))) |
| 30 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → 𝑄 ∈ (Base‘𝐾)) | |
| 31 | 25, 26, 15 | syl2anc 584 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (◡𝐼‘(𝑁‘{𝑥})) ∈ (Base‘𝐾)) |
| 32 | 1, 8, 12 | dih11 41312 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (◡𝐼‘(𝑁‘{𝑥})) ∈ (Base‘𝐾)) → ((𝐼‘𝑄) = (𝐼‘(◡𝐼‘(𝑁‘{𝑥}))) ↔ 𝑄 = (◡𝐼‘(𝑁‘{𝑥})))) |
| 33 | 25, 30, 31, 32 | syl3anc 1373 | . . . . 5 ⊢ (((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → ((𝐼‘𝑄) = (𝐼‘(◡𝐼‘(𝑁‘{𝑥}))) ↔ 𝑄 = (◡𝐼‘(𝑁‘{𝑥})))) |
| 34 | 29, 33 | bitr3d 281 | . . . 4 ⊢ (((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → ((𝐼‘𝑄) = (𝑁‘{𝑥}) ↔ 𝑄 = (◡𝐼‘(𝑁‘{𝑥})))) |
| 35 | 34 | rexbidva 3154 | . . 3 ⊢ ((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) → (∃𝑥 ∈ (𝑉 ∖ { 0 })(𝐼‘𝑄) = (𝑁‘{𝑥}) ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑄 = (◡𝐼‘(𝑁‘{𝑥})))) |
| 36 | 24, 35 | bitrd 279 | . 2 ⊢ ((𝜑 ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑄 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑄 = (◡𝐼‘(𝑁‘{𝑥})))) |
| 37 | 4, 20, 36 | pm5.21nd 801 | 1 ⊢ (𝜑 → (𝑄 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑄 = (◡𝐼‘(𝑁‘{𝑥})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∖ cdif 3894 {csn 4573 ◡ccnv 5613 ran crn 5615 ‘cfv 6481 Basecbs 17120 0gc0g 17343 LSpanclspn 20904 Atomscatm 39310 HLchlt 39397 LHypclh 40031 DVecHcdvh 41125 DIsoHcdih 41275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-riotaBAD 39000 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-undef 8203 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-0g 17345 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-cntz 19229 df-lsm 19548 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-drng 20646 df-lmod 20795 df-lss 20865 df-lsp 20905 df-lvec 21037 df-lsatoms 39023 df-oposet 39223 df-ol 39225 df-oml 39226 df-covers 39313 df-ats 39314 df-atl 39345 df-cvlat 39369 df-hlat 39398 df-llines 39545 df-lplanes 39546 df-lvols 39547 df-lines 39548 df-psubsp 39550 df-pmap 39551 df-padd 39843 df-lhyp 40035 df-laut 40036 df-ldil 40151 df-ltrn 40152 df-trl 40206 df-tendo 40802 df-edring 40804 df-disoa 41076 df-dvech 41126 df-dib 41186 df-dic 41220 df-dih 41276 |
| This theorem is referenced by: djhcvat42 41462 |
| Copyright terms: Public domain | W3C validator |