| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cncnp2 | Structured version Visualization version GIF version | ||
| Description: A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cncnp.1 | ⊢ 𝑋 = ∪ 𝐽 |
| cncnp.2 | ⊢ 𝑌 = ∪ 𝐾 |
| Ref | Expression |
|---|---|
| cncnp2 | ⊢ (𝑋 ≠ ∅ → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntop1 23134 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 2 | cncnp.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | toptopon 22811 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 4 | 1, 3 | sylib 218 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘𝑋)) |
| 5 | cntop2 23135 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 6 | cncnp.2 | . . . . . 6 ⊢ 𝑌 = ∪ 𝐾 | |
| 7 | 6 | toptopon 22811 | . . . . 5 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌)) |
| 8 | 5, 7 | sylib 218 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ (TopOn‘𝑌)) |
| 9 | 2, 6 | cnf 23140 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
| 10 | 4, 8, 9 | jca31 514 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌)) |
| 11 | 10 | adantl 481 | . 2 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌)) |
| 12 | r19.2z 4461 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → ∃𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) | |
| 13 | cnptop1 23136 | . . . . . 6 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐽 ∈ Top) | |
| 14 | 13, 3 | sylib 218 | . . . . 5 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐽 ∈ (TopOn‘𝑋)) |
| 15 | cnptop2 23137 | . . . . . 6 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐾 ∈ Top) | |
| 16 | 15, 7 | sylib 218 | . . . . 5 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐾 ∈ (TopOn‘𝑌)) |
| 17 | 2, 6 | cnpf 23141 | . . . . 5 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐹:𝑋⟶𝑌) |
| 18 | 14, 16, 17 | jca31 514 | . . . 4 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌)) |
| 19 | 18 | rexlimivw 3131 | . . 3 ⊢ (∃𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌)) |
| 20 | 12, 19 | syl 17 | . 2 ⊢ ((𝑋 ≠ ∅ ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌)) |
| 21 | cncnp 23174 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) | |
| 22 | 21 | baibd 539 | . 2 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
| 23 | 11, 20, 22 | pm5.21nd 801 | 1 ⊢ (𝑋 ≠ ∅ → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ∅c0 4299 ∪ cuni 4874 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 Topctop 22787 TopOnctopon 22804 Cn ccn 23118 CnP ccnp 23119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 df-topgen 17413 df-top 22788 df-topon 22805 df-cn 23121 df-cnp 23122 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |