| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cncnp2 | Structured version Visualization version GIF version | ||
| Description: A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cncnp.1 | ⊢ 𝑋 = ∪ 𝐽 |
| cncnp.2 | ⊢ 𝑌 = ∪ 𝐾 |
| Ref | Expression |
|---|---|
| cncnp2 | ⊢ (𝑋 ≠ ∅ → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntop1 23248 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 2 | cncnp.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | toptopon 22923 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 4 | 1, 3 | sylib 218 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘𝑋)) |
| 5 | cntop2 23249 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 6 | cncnp.2 | . . . . . 6 ⊢ 𝑌 = ∪ 𝐾 | |
| 7 | 6 | toptopon 22923 | . . . . 5 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌)) |
| 8 | 5, 7 | sylib 218 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ (TopOn‘𝑌)) |
| 9 | 2, 6 | cnf 23254 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
| 10 | 4, 8, 9 | jca31 514 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌)) |
| 11 | 10 | adantl 481 | . 2 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌)) |
| 12 | r19.2z 4495 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → ∃𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) | |
| 13 | cnptop1 23250 | . . . . . 6 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐽 ∈ Top) | |
| 14 | 13, 3 | sylib 218 | . . . . 5 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐽 ∈ (TopOn‘𝑋)) |
| 15 | cnptop2 23251 | . . . . . 6 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐾 ∈ Top) | |
| 16 | 15, 7 | sylib 218 | . . . . 5 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐾 ∈ (TopOn‘𝑌)) |
| 17 | 2, 6 | cnpf 23255 | . . . . 5 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐹:𝑋⟶𝑌) |
| 18 | 14, 16, 17 | jca31 514 | . . . 4 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌)) |
| 19 | 18 | rexlimivw 3151 | . . 3 ⊢ (∃𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌)) |
| 20 | 12, 19 | syl 17 | . 2 ⊢ ((𝑋 ≠ ∅ ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌)) |
| 21 | cncnp 23288 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) | |
| 22 | 21 | baibd 539 | . 2 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
| 23 | 11, 20, 22 | pm5.21nd 802 | 1 ⊢ (𝑋 ≠ ∅ → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ∅c0 4333 ∪ cuni 4907 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 Topctop 22899 TopOnctopon 22916 Cn ccn 23232 CnP ccnp 23233 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-map 8868 df-topgen 17488 df-top 22900 df-topon 22917 df-cn 23235 df-cnp 23236 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |