| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cncnp2 | Structured version Visualization version GIF version | ||
| Description: A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cncnp.1 | ⊢ 𝑋 = ∪ 𝐽 |
| cncnp.2 | ⊢ 𝑌 = ∪ 𝐾 |
| Ref | Expression |
|---|---|
| cncnp2 | ⊢ (𝑋 ≠ ∅ → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntop1 23153 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 2 | cncnp.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | toptopon 22830 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 4 | 1, 3 | sylib 218 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘𝑋)) |
| 5 | cntop2 23154 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 6 | cncnp.2 | . . . . . 6 ⊢ 𝑌 = ∪ 𝐾 | |
| 7 | 6 | toptopon 22830 | . . . . 5 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌)) |
| 8 | 5, 7 | sylib 218 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ (TopOn‘𝑌)) |
| 9 | 2, 6 | cnf 23159 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
| 10 | 4, 8, 9 | jca31 514 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌)) |
| 11 | 10 | adantl 481 | . 2 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌)) |
| 12 | r19.2z 4445 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → ∃𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) | |
| 13 | cnptop1 23155 | . . . . . 6 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐽 ∈ Top) | |
| 14 | 13, 3 | sylib 218 | . . . . 5 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐽 ∈ (TopOn‘𝑋)) |
| 15 | cnptop2 23156 | . . . . . 6 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐾 ∈ Top) | |
| 16 | 15, 7 | sylib 218 | . . . . 5 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐾 ∈ (TopOn‘𝑌)) |
| 17 | 2, 6 | cnpf 23160 | . . . . 5 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐹:𝑋⟶𝑌) |
| 18 | 14, 16, 17 | jca31 514 | . . . 4 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌)) |
| 19 | 18 | rexlimivw 3129 | . . 3 ⊢ (∃𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌)) |
| 20 | 12, 19 | syl 17 | . 2 ⊢ ((𝑋 ≠ ∅ ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌)) |
| 21 | cncnp 23193 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) | |
| 22 | 21 | baibd 539 | . 2 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
| 23 | 11, 20, 22 | pm5.21nd 801 | 1 ⊢ (𝑋 ≠ ∅ → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ∅c0 4283 ∪ cuni 4859 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Topctop 22806 TopOnctopon 22823 Cn ccn 23137 CnP ccnp 23138 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-topgen 17344 df-top 22807 df-topon 22824 df-cn 23140 df-cnp 23141 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |