MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncnp2 Structured version   Visualization version   GIF version

Theorem cncnp2 23105
Description: A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
cncnp.1 𝑋 = βˆͺ 𝐽
cncnp.2 π‘Œ = βˆͺ 𝐾
Assertion
Ref Expression
cncnp2 (𝑋 β‰  βˆ… β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯)))
Distinct variable groups:   π‘₯,𝐹   π‘₯,𝐽   π‘₯,𝐾   π‘₯,𝑋   π‘₯,π‘Œ

Proof of Theorem cncnp2
StepHypRef Expression
1 cntop1 23064 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) β†’ 𝐽 ∈ Top)
2 cncnp.1 . . . . . 6 𝑋 = βˆͺ 𝐽
32toptopon 22739 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOnβ€˜π‘‹))
41, 3sylib 217 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
5 cntop2 23065 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) β†’ 𝐾 ∈ Top)
6 cncnp.2 . . . . . 6 π‘Œ = βˆͺ 𝐾
76toptopon 22739 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOnβ€˜π‘Œ))
85, 7sylib 217 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
92, 6cnf 23070 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
104, 8, 9jca31 514 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) β†’ ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ))
1110adantl 481 . 2 ((𝑋 β‰  βˆ… ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) β†’ ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ))
12 r19.2z 4494 . . 3 ((𝑋 β‰  βˆ… ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯)) β†’ βˆƒπ‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))
13 cnptop1 23066 . . . . . 6 (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) β†’ 𝐽 ∈ Top)
1413, 3sylib 217 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
15 cnptop2 23067 . . . . . 6 (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) β†’ 𝐾 ∈ Top)
1615, 7sylib 217 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
172, 6cnpf 23071 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
1814, 16, 17jca31 514 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) β†’ ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ))
1918rexlimivw 3150 . . 3 (βˆƒπ‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) β†’ ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ))
2012, 19syl 17 . 2 ((𝑋 β‰  βˆ… ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯)) β†’ ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ))
21 cncnp 23104 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))))
2221baibd 539 . 2 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯)))
2311, 20, 22pm5.21nd 799 1 (𝑋 β‰  βˆ… β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  βˆ€wral 3060  βˆƒwrex 3069  βˆ…c0 4322  βˆͺ cuni 4908  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7412  Topctop 22715  TopOnctopon 22732   Cn ccn 23048   CnP ccnp 23049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-map 8828  df-topgen 17396  df-top 22716  df-topon 22733  df-cn 23051  df-cnp 23052
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator